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Abstract 

Biological molecules often crystallize either as tubes, having helical symmetry, or as two-dimensional sheets. Both sorts 

of crystal are potentially suitable for structure determination to atomic resolution by electron crystallography, but their 
lattice distortions must first be corrected. We have developed a procedure for tubular crystals, based on independent 
alignment of very short segments against a reference structure, that allows accurate determination and correction of 
distortions in all three dimensions. Application of this procedure to images used previously to determine the 9 A structure 
of the acetylcholine receptor showed that about half of the signal loss caused by the distortions arises from effects 

correctable in the image plane (bending, changes in scale) and half from effects requiring out-of-plane correction 
(variations in tilt and in twist around the tube axis). By dividing the tubes into short segments (of lengths about equal to 
their diameter) it became possible to recover almost all of this loss without reducing appreciably the accuracy in the 
segmental alignments. The signal retention improved by only 10% at low resolution (20 A), but by progressively greater 
amounts at higher resolutions, up to - 40% at 9 8. As a result the finer structural details were more clearly resolved. 
With images of better electron-optical quality, much greater gains in signal retention should be obtained. 
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1. Introduction 

Tubular crystals are assemblies of identical mol- 
ecules arranged periodically over the surface of 
a cylinder to make a helix. Membrane proteins and 
also some soluble proteins form these crystals 
through protein-protein interactions or through 

specific associations involving the lipids. One of the 

*Corresponding author. Tel.: 01223-402492; Fax: 01223. 
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best-characterized examples is the tube formed by 
the nicotinic acetylcholine (ACh) receptor [ 11, 
a neurotransmitter-gated ion channel involved in 

the transmission of electrical signals between cells 
at the chemical synapse. Other examples include 
calcium ATPase [2], botulinum neurotoxin [3], 
RNA polymerase [4], the cytochrome bc, complex 

[S], and photosystem 110[6]. Such tubes are often 
no more than - 1000 A across: sufficiently thin, 
when embedded in ice, to be imaged in the electron 
microscope as weak phase object [7]. Compared 
with helical filaments, tubes contain more subunits 
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and therefore more information per unit length. 
Unlike two-dimensional crystals they present views 

of their constituent molecules from many different, 
precisely defined directions. Tubes therefore appear 
to be exceptionally favorable specimens for three- 

dimensional structure determination by electron 

crystallography. 
Despite their advantages, however, the best res- 

olution attained from tubes is only - 9 A. The 
presence of distortions is one limiting factor. Dis- 

tortions cause regions of a crystal to be displaced 
from their exact lattice positions, leading to reduc- 
tion of diffraction intensities and signal loss, which 

become progressively greater at higher resolution. 

Correction of displacements in two-dimensional 
lattices, due to bending in the image plane, has 

been shown to bring about substantial improve- 

ments in signal-to-noise ratio [S], allowing in some 
cases atomic detail to be revealed [9, lo]. With 

tubes, large displacements can arise from bending 
in the image plane, tilting (bending away from the 
image plane), variations in twist around the tube 

axis, changes in scale due to slight stretching or 
shrinkage, and flattening in the direction parallel to 

the electron beam. Since the best images are ob- 
tained from tubes lying over holes in the carbon 
support film [ll], rather than on the flat film itself, 

the three-dimensional distortions ~ tilt and twist 
_ are likely to be particularly important. Several 

procedures have been devised for correcting some 

of these distortions in other helical assemblies: for 
example, bending within the image plane has been 

corrected by reinterpolating the image point-for- 

point in studies of actin filaments [12-141, tobacco 
mosaic virus [15], RecA filaments [16], micro- 
tubules [17, 181, and bacterial flagellar filaments 
[19,20]; variable twist has been corrected by ap- 
plying an innovative real-space algorithm in 
a study of sickle cell hemoglobin fibers [Zl]. 

However, no way has yet been developed that cor- 
rects the different kinds of distortions at the same 
time. 

We describe here a general method that simulta- 
neously corrects the different kinds of distortions. 
The tube is first divided into very short segments; 
each segment is independently aligned in all three 
dimensions by cross-correlation against a reference 
structure; and then the individual segments are 

added together after the distortion-induced .dis- 

placements between them have been removed. This 
method thus treats each short segment as a perfect 
helix, ignoring any small displacements caused by 

the distortions within the segment. As discussed in 

the next section, the recentering of the tube at 
intervals should greatly reduce the large displace- 
ments incurred by most long-range distortions 

(bending, scale changes, variable tilt and twist). By 
using short enough segments, all displacements (in- 
cluding those within segments, which are not cor- 

rected) are reduced to the point they no longer have 
a significant effect. 

The effectiveness of this approach (like any other) 
depends on the precision with which the distortions 

can be locally determined. If the segment length is 

too long, the variations along the tube will be 
smeared out (poor local fitting). If the segment 

length is too short, any gain resulting from improv- 
ing the fitting to the reference structure (i.e. by 
following the distortions more closely with shorter 

steps) might be outweighed by the new losses incur- 
red by increased alignment errors (due to the lower 

signal-to-noise ratios of such short segments). 
To evaluate the method and the properties of 

distortions present in tubular crystals, we investi- 
gated the images used in an earlier study that deter- 

mined the 9 A structure of the nicotinic ACh 
receptor [22]. We are able to show that about half 

of the signal loss caused by distortions in the ACh 

receptor tubes arises from effects correctable in 
two-dimensions (bending and scale changes) and 

about half from effects requiring three-dimensional 
correction (i.e., variations in out-of-plane tilt and 
twist). By dividing the tubes into segments of length 
about equal to their diameter it was possible to 

recover almost ail of this loss. Gains in signal reten- 
tion increased to - 40% in the highest resolution 
range (1 l-9 A), and extrapolations suggest that the 

distortion corrections should lead to much more 
substantial improvements when better images are 

obtained. 

2. Theoretical considerations 

In this section we examine the relation between 
the signal retained or lost and the length of the tube 
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segment. We calculate the amount of signal loss 
caused by a given type of distortion by first model- 
ling the effects of the distortion on the crystal in real 
space, and then relating those effects to a reduction 
in the amplitude (or square root of intensity) of the 
signal in Fourier space. 

Normally in investigating a crystal, one assumes 
that its component molecules are ordered in a regu- 
lar array and, based on the lattice parameters of the 
array, one can predict where each element of mass 
in each molecule should be. Distortions, however, 
move those elements of mass away from their pre- 
dicted positions, introducing errors in their align- 
ment. When one takes the Fourier transform of the 
crystal, each element in the crystal contributes 
Fourier terms throughout the transform, all with 
particular amplitudes and phases. By moving one 
element of mass away from where it should be, we 
introduce a phase error into each of its Fourier 
terms: 

(1) 

where AC#J is the phase error in radians of the 
Fourier term, Ad is the real-space error in the 
position of the mass (its displacement), and & is the 
Ad-direction component of the Fourier term’s wave 
vector. 

In the transform of a perfect crystal, the Fourier 
terms from equivalent elements in different unit 
cells add up coherently at the layer-lines, where we 
collect the data. In a distorted crystal, the summa- 
tion is no longer perfectly coherent: the strength of 
each term is reduced by the factor cos A$. So, 
looking at the whole crystal, the distortion-induced 
reduction in the amplitude of a particular Fourier 
term along a layer-line is 

r cos A&x, y) dx dy 

Fraction retained = J A 

s 

(2) 
cos 0 dx dy 

A 

where A covers the entire area of the crystal and 
A&x, y) refers to the phase error of the Fourier 
term arising from the mass at (x, y). (A, x, and 
y refer to the undistorted crystal.) To be exact, we 
should really integrate over the volume of the crys- 

tal and weight each volume element by the mass it 
contains, but for a general idea of how distortions 
affect the data, this simplification should do. A4, 
which is a function of the distortion-induced dis- 
placement (Eq. (1)) depends on the type of distor- 
tion and the displacements that the distortion 
induces. 

Most distortions can be regarded as second-or- 
der effects: they generate displacements that accrue 
as the square of the distance from the center of the 
crystal. In tubes, bending within the image plane, 
stretch (or shrinkage) along the axis, and twist 
around the axis fall into the category of second- 
order distortions, since linear changes in the dis- 
placements they generate would only represent 
errors of overall alignment (see Appendix). The 
displacements accrue along the tube axis (y) more 
than they accrue normal to the axis (x) because of 
the tube’s limited width, so the most damaging 
second-order distortions follow the general rule: 

Ad = [y’, (3) 

where Ad is the positional error and [ is a coeffic- 
ient describing the magnitude of the distortion. 
Hence the fraction of signal retained, in the direc- 
tion of maximum error, is related to the tube length 

by 

Fraction retained = f jI:cos (y) dy. (4) 

where e is the length of the segment and 1. is the 
Fourier term’s wavelength in the direction being 
considered. Fig. la illustrates the form of the curve 
for second-order distortions. Almost all the signal 
is retained for segments shorter than a critical 
length. Beyond this length, however, the retention 
drops off dramatically until a level corresponding 
to - 20% is reached, at which point the retention 
falls off more gradually. We find that the critical 
length for retention of 5 A detail with the ACh 
receptor tubes is typically - 2000 A, and Fig. lb 
shows the curve that would be obtained for this 
case. 

rig. lc plots the curve calculated for retention of 
5 A detail in the ACh receptor tubes, assuming 
first-order distortions: where the displacements ac- 
crue proportionally with distance. At their worst, 
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Fig. 1. Theoretical plots of fraction of signal retained as a function of segment length, L, (a-r), and flattening ratio, rscale (d). (a) shows the 
form of the curve for second-order distortions, which include bending within the image plane, stretch (or shrinkage) along the tube axis. 
and azimuthal twist around this axis: almost all the signal is retained for segments shorter than a critical length; beyond this length, 
however, the signal retention drops off rapidly until it levels off again at - 20%. (b) is a typical case for second-order distortions of ACh 
receptor tubes, where the critical length is - _ 7000 A for retention of 5 A detail, (c)is the case for retention of 5 A detail with first-order 
distortions, which include variation in out-of-plane tilt: signal retention falls steadily as the length of the segment is increased; with short 
segments, however, most of the signal is still retained. (d) shows that rate of signal loss due to flattening (which is independent of the 
length of the segment) depends on the flattening ratio (rscale); most of the signal is retained when the tube is flattened by less than l-2%; 
5% flattening, however, results in the loss of over half the signal. The rscale value estimated experimentally corresponds to rscale(r,) in 
the Appendix. The fractional signal retention was calculated in (bHd) in the direction of maximum displacement, using the equations in 
the Appendix (parameters for (c): t = 3 x 10e6, n = 10, X = 0.005 A- ‘, Z = 0.2 A-‘; and for (d): P,,, = 250 A, rma. = 380 A). 

changes in out-of-plane tilt may be regarded as 
a distortion of this type, since (unlike positional 
displacements) linear changes in angular displace- 
ments cannot be represented simply as alignment 
errors. In this case, the amount of signal retained 
decreases more rapidly as the segment length is 
increased; however, most of the signal will still be 
retained if the segment is kept sufficiently short. 

The amount of signal retained in flattened tubes 
depends solely on the extent of flattening, rather 
than on the segment length, so this distortion can- 

not readily be corrected by dividing tube into 
shorter segments. However, most of the signal 

should be retained if the tube is flattened by less 
than l-2% (Fig. Id), a situation that appears likely 
to be fulfilled in images of narrow tubes which are 
completely surrounded by uniformly thick ice (see 

Section 5). 
The main conclusion to be drawn from these 

calculations is that it is important to use segments 
of tube less than a critical length in the distortion 
analysis in order to avoid serious signal loss due to 
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most distortions, which are usually second- (or 
higher-) order effects. On the other hand, there is 
little to be gained by the use of segments much 
shorter than the critical length, because at this 
length the signal loss from even first-order distor- 
tions has already become quite small. 

3. Methods 

3.1. ACh receptor tubes 

The tubes examined in this study were grown 
from the ACh receptor-rich postsynaptic mem- 
branes of the electric ray, Torpedo marmorata [l] 
and belong to a well characterized helical family 
( - 16.6); [ll, 22-241. They are composed of ACh 
receptors in their native lipid/protein environment, 
have a diameter of 770 A, and are up to several 
microns long. 

The images were of the tubes suspended in uni- 
formly thick amorphous ice over holes in the car- 
bon support film. Twenty-six of the images had 
been used in an earlier study to determine the 
structure of the ACh receptor at 9 A [22], and were 
recorded at 35000 x with a total dose of _ 6 
electron/A*, using a Philips EM420 microscope 
operating at 120 kV. Their range of defocus (7000- 
18 800 A) was sufficiently wide to ensure that all 
spacings present were well sampled. A maximum 
range of 1.0-1.035 was allowed for the radial factor 
(rscale) needed to provide consistent scaling of any 
particular image with the reference dataset. Two 
additional images, recorded at 400 kV, were in- 
cluded in the analysis (i.e. 28 were used altogether). 
The micrographs were scanned with a modified 
Joyce-Loebl densitometer usingOspot and step sizes 
of 5 urn (corresponding to 1.43 A on the specimen). 

Approximate defocus and astigmatism values for 
the images were determined by sector-averaging of 
the amplitudes in Fourier transforms computed 
from the tubes, and by fitting of the averaged am- 
plitudes in each sector to theoretical contrast trans- 
fer functions (CTFs), assuming a figure of 7% for 
the amplitude contrast [7,25]. The CTF variation 
was later refined by comparing the phases of the 
Fourier terms from the near and far sides of each 
tube (corresponding to the sides nearest and fur- 

thest from the electron source) against those of 
a reference structure. This refinement, and other 
steps where the methods have been modified from 
previous work, are described in further detail be- 
low. 

3.2. Subdivision of axial repeats 

The axial repeat distances of most of the tubes 
had been determined in the earlier study, and were 
found to lie typically in the range 20004000 A. 
Pilot studies suggested that segments about 
800-1200 A long were sufficiently short to be able 
to trace accurately the variations associated with 
each of the distortions, and that there was no ad- 
vantage in using even shorter segments. We there- 
fore chose a third of a whole repeat distance to 
be the standard subdivision into segments for 
alignment against the reference structure (although 
alternative subdivisions, maintaining for example 
approximately equal segment lengths, could readily 
be done). Each i-segment was aligned independent- 
ly of the others (see below), and the Fourier terms 
extracted from the $-segments were recombined to 
re-create the (distortion-corrected) whole repeats. 
By using segments that were fixed fractions of the 
repeat length (rather than of constant length) and 
re-creating the whole repeats, we ensured that each 
distortion-corrected dataset contained information 
from a complete set of equally sampled views. If this 
were not done, there would be an increase in layer- 
line overlap which, in turn, would introduce errors 
in some of the higher resolution Fourier terms. 

3.3. Distortion correction procedure 

Fig. 2 gives a schematic outline of the steps in- 
volved in correcting distortions. The aim of the 
steps is to divide the whole repeats into f-segments 
and to define completely the three-dimensional 
alignment of each i-segment; that is, its rotation in 
the image plane (0); out-of-plane tilt (0); effective 
repeat length (‘repeat’); width relative to that of the 
reference structure (rscale); and the X-, Z- and azi- 
muthal alignments (x, z, cp) of the origin (see Fig. 3). 
Each of these seven parameters, except for cu, is 
ultimately measured by comparing the Fourier 
terms obtained from the t-segments with the 
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Overall procedure 
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reference set of Fourier terms. The reference set 
used here was from the 9 A structure [22], obtained 
by averaging the terms from 26 tubes. 

The overall procedure (Fig. 2, left) is begun by 
dividing the (previously selected) best regions of the 
tube into lengths equal to the axial repeat distance. 

0 

(Tilt out 
of plane) 

Fig. 3. Definitions of the alignment parameters describing 
a tube segment. 0 is its orientation within the image plane 
(rotation); o is its orientation out of the plane (tilt); x and y are 
the horizontal and vertical positions of the center of the segment; 
z is the distance of the origin from the x axis, along the tube; ‘p is 
the azimuthal location of the origin (twist); rscale is the width of 
the tube relative to that of the reference structure; and ‘repeat’ is 
the length of tube that would contain all possible views of its 
component molecules. 

4 
Fig. 2. Flow chart for segment-by-segment correction of distor- 
tions in images of tubular crystals. Whole repeat lengths of the 
tubes are divided into f-segments, which are aligned in three 
dimensions to a reference structure by determining their rota- 
tion in the image plane (0); out-of-plane tilt (w), effective repeat 
length (‘repeat’); width relative to that of a reference structure 
(rscale); and the X-, z-, and azimuthal alignments (x. z, cp) of the 
origin. See also Fig. 3. The adjustment of the parameters to 
minimize the twofold phase residual (dashed box) is usually 
unnecessary, resulting in no changes to the parameters. Clearly 
there may be some advantage in repeating the overall procedure 
using the distortion-corrected structure as a new reference. 

Each such whole repeat is first aligned approxim- 
ately to the same twofold phase origin as the refer- 
ence dataset, using standard methods [ll]. It is 
then subjected to the automated sequence REFINE 
(Fig. 2, top right), which determines more accurate- 
ly the values of the seven parameters, and also 
divides the whole repeat into sixths and determines 
for each h-segment the values of o, x, Z, cp, and 
rscale. The x and z measurements from the $-seg- 
ments are used to calculate 8 and ‘repeat’ for each 
f-segment, and then SEARCH.COM (Fig. 2, bot- 
tom right) is run on the f-segments to determine the 
other five parameters (w, x, z, q, and rscale). Fi- 
nally, a full set of Fourier terms is extracted from 
the transform of each i-segment and averaged with 
those from the other f-segments to re-create the 
(now distortion-corrected) whole repeat. 

The computations involved in accomplishing 
these steps are described in the following para- 
graphs. 

3.4. Boxing and Fourier transformation 

Areas of tube are boxed off from the den- 
sitometered arrays and Fourier transformed using 
the program HFTS. This program re-interpolates 
a selected length of tube (usually a whole repeat) at 
a specified rotation angle (0) to make 4096 grid 
units, before boxing off a region 10% greater than 
the tube width, floating it (taking into account 
density gradients along the edges, in both x and JJ), 
and apodizing the edges; the boxed-off and re-inter- 
polated area is then padded with zeros to make 
2048 grid units width and Fourier transformed. 
HFTS also allows the whole repeat to be divided 
into any number of segments; the tube can be 
further rotated about the center of the selected 
segment by an angle A0 and resealed along its axis 
as though its effective repeat distance is repeat 
f Arepeat. Segments other than the one selected 

are collapsed to zero density and the Fourier trans- 
form is performed of the whole repeat (including 
the now-zero-density segments). 

3.5. Rejnement of axial repeats 

Each whole repeat is aligned accurately to the 
reference dataset using the control program 
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REFINE. This program incorporates several auto- 

mated sequences, described in more detail below. 
Initially, SEARCH.COM is run to determine the 
five parameters, (0, x, z, q, and rscale. Next, 

REFINE iterates through ROTX.COM to deter- 
mine the sixth parameter, 0, and through 

REPEAT.COM to determine the seventh para- 
meter, ‘repeat’. SEARCH.COM is then run again, 

and the sequence is continued until none of the 
parameters changes significantly. 

SEARCH.COM begins by estimating just x and 
W. This is done by comparing equivalent layer-line 

peaks on either side of the meridian in the trans- 
form and adjusting x and tc) to minimize their phase 

asymmetry [26]. The Fourier terms lying within 

the first CTF zero are then extracted, using the 
x and o estimates to correct the phases along the 

layer-lines, and an average is made of the terms 
from the near and far sides. z. cp, and rscale are 

estimated next (to 0.01 A, O.Ol’~, and 0.001 units 
precision, respectively) by minimizing the interpar- 
title phase residual [27,28] obtained by comparing 

the averaged Fourier terms with those of the refer- 

ence dataset. N is then further refined (to 0.01 grid 
units precision) by minimizing the interparticle 

phase residual, this time with the Fourier terms 
from the near and far sides kept separate. If x cha- 

nges significantly, SEARCH.COM iterates back, 
minimizing the phase asymmetry across the meridi- 

an to redetermine o while keeping the new value of 
s. The new values of .Y and w are used to re-extract 
the Fourier terms along the layer-lines, and then z. 

cp, rscale, and x are redetermined by minimizing the 
interparticle phase residual, as before. The iter- 
ations, and SEARCH.COM, end when x stops 

changing significantly. 
ROTX.COM determines 8 (0.01’ precision) by 

minimizing the crystallographic R-factor calculated 
between the averaged Fourier terms and those of 

the reference dataset. REPEAT.COM determines 
the repeat distance, ‘repeat’ (1 A precision), by 
maximizing the total amplitude on layer-lines be- 
yond a specified distance (l/46 A) up the meridian. 
Usually, many Fourier transforms need to be cal- 
culated before 0 and ‘repeat’ converge to their best 
estimates, and 2048 x 2048 (rather than 2048 x 
4096) arrays are used for these steps to reduce 
processing time. 

3.6. +-segments 

Reliable estimates of 0 and ‘repeat’ for the f- 
segments could not be obtained by the same 

method as was used for the whole repeat. The more 
accurate and robust method devised was to subdi- 
vide each f-segment into two halves, and to esti- 

mate 0 and ‘repeat’ from the values of x, y, and z for 
each half. Determination of .y and z for each half of 

the i-segments is done by dividing the whole repeat 
into sixths, centered at evenly spaced y-locations, 

and running SEARCH.COM on each (therefore 
also determining (I), cp, and rscale). 

An approximate value for the rotation angle of 
a &segment, U,, could be calculated from the x- and 

y-locations of its ‘top’ and ‘bottom’ halves: 

(5) 

In practice, however, the errors in xtop and 

SbOtto,,, tended to be large (because they were ob- 
tained from very short segments: &segments), and 
a more accurate value of 6 was obtained by aver- 

aging 8, with the rotation angles estimated from 
neighboring top and bottom pairs of &-segments. 

The effective repeat distance of the i-segment, 

‘repeat’, is calculated similarly from the z-align- 
ments of the origin for the ‘top’ and ‘bottom’ halves: 

repeat, = 6(ztop - zb&t,,m) + repeat,, (6) 

with repeat, representing the length of the whole 

repeat. Again, neighboring segments are averaged 
to improve accuracy. 

Once 0 and ‘repeat’ have been determined in this 
way for each f-segment along the length of a tube, 

SEARCH.COM is run on each i-segment to deter- 
mine the other 5 parameters: x, w, z, cp, and rscale 
~ and the complete three-dimensional alignment of 

each segment is thereby achieved. 

3.7. Evaluation 

Because of the presence of twofold axes oriented 
radially with respect to the tube axis, it was always 
possible to adjust the phase origin of a whole repeat 
so that the phases of all Fourier terms should be 0” 
or 180”. The data could therefore be assessed at this 
stage by averaging the f-segments to make whole 
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repeats and calculating, from the whole repeats, 
twofold phase residuals: 

(7) 

where A4(R, 1) is the phase deviation from the 
nearest of 0” or 180”, and F(R, 1) is the amplitude of 
the Fourier term, at radius R on layer-line 1. 

This twofold phase residual was also used as 
a basis for further refining the parameters if neces- 
sary (see Fig. 2, dashed box). The variations in the 
parameters along the length of the tube were plot- 
ted, including, for 0 and ‘repeat’, alternative curves 
obtained from successive &segments and from suc- 
cessive &segments (see Fig. 7). Usually the discrep- 
ancies between the two sets of alternative curves 
were minor and could be neglected. In the few 
examples where this was not true, the parameter in 
question was adjusted and assumed to be improved 
if, as a result of the adjustment, @s became smaller. 
Gross deviations in other parameters from one 
segment to the next were also checked in a similar 
manner. 

3.8. Collection of higher resolution terms 

The computations above to measure the distor- 
tions and align each +-segment of a tube to the 
reference structure, were based on Fourier terms 
extending along the layer-lines only to the first zero 
of the CTF. Complete distortion-corrected datasets 
from both the near and far sides were required in 
the subsequent steps of CTF refinement, measure- 
ment of background noise, and merging of Fourier 
terms from different tubes. These datasets were 
obtained simply by extracting the Fourier terms 
from the transform of each (aligned) &segment of 
the tube out to the resolution cut-off (8 A), and 
averaging them together. 

3.9. Rejnement of CTF 

For each image, the defocus values along both 
the major and minor axes of astigmatism were 
refined by maximizing the agreement between the 
phases from the distortion-corrected dataset and 
the (already CTF-corrected) reference structure. 

The near and far sides from each image were com- 
pared to the reference separately after their phases 
had been “corrected” for theoretical CTF vari- 
ations, assuming in turn each of a set of defocus 
values within a narrow range about the original 
estimate. The best estimate was taken to be the 
defocus yielding the highest image Quality, Qi, de- 
fined as the number of test phases in agreement 
with (Iphase difference1 < 90’) the centrosymmetric 
reference phases, minus those opposed, divided by 
the total number of comparisons. Having obtained 
the best estimate from each side, the phases of the 
Fourier terms in its dataset were modified appro- 
priately and an extra column was added to the 
dataset, listing the CTF value associated with each 
point. Defocus figures found by the tefinement pro- 
cedure were usually within -v 500 A of those esti- 
mated originally by sector-averaging of the 
amplitudes (see above), and consistent with the fact 
that the centers of mass of the two sides are approx- 
imately 400 A apart. 

Fig. 4 gives an example of the two-dimensional 
plots obtained by highlighting Fourier terms (from 
one side of a tube) whose phases agree ( + ) and 
disagree ( - ) with those of the reference structure. 
The overall quality, Qi, was 0.30 for this side and 
0.28 for the other side. By comparing the ( + ) with 
the ( - ) plots it was possible to get an idea of the 
general quality of the terms in different areas of the 
Fourier transform. Differences between the ( + ) 
and ( - ) plots always became difficult to distin- 
guish by 10 A resolution, indicating that the signal 
here was very weak. Values of Qi for the different 
tubes ranged between 0.17 and 0.30, and for most 
tubes the near and the far sides gave similar results 
(mean difference: 0.02 If: 0.017 sd.). 

3.10. Measurement qf background noise 

Estimates of background noise were made from 
Fourier transforms of the ice on either side of the 
tube, using strips having the same dimensions as 
the portions of tube that had been boxed-off (see 
Fig. 6a). The Fourier transforms were added to- 
gether incoherently, and the noise estimates were 
the amplitudes averaged locally about points at 
positions corresponding to the points along the 
layer-lines. These estimates were scaled so that 
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Fig. 4. Two-dimensional plots from the far side of a single (distortion-corrected) tube, highlighting those Fourier terms having the same 
(( + ); left) and opposite (( - ); right) phases to those from the reference structure. Concentric rings drawn over the plots indicate the 
positions of the zeros of the CTF (mean underfocus: 9900 A). At low resolution, the ( + ) plot is stronger because the phases mostly agree 
with those of the reference, reflecting a good signal-to-noise ratio. At higher resolution, however, the difference between the two plots is 
harder to detect, reflecting a fall-off in signal-to-noise ratio. The CTF was refined by maximizing the number of terms in the ( + ) plot 
while minimizing the number of terms in the ( - ) plot. In both plots the unique Fourier terms were included together with their 
mirror-images across the meridian, giving the appearance of the Fourier transform of both sides of the tube. The arrow points to 
a layer-line ((0.5;30); [l l]), at a resolution of l/35 A-’ (see also Fig. 6b); the plots extend to a resolution of l/8.7 k’. 

their sum equalled the sum of the layer-line ampli- 
tudes, and then incorporated as additional columns 

in the near- and far-side-CTF-corrected datasets. 
Thus each point along each layer-line was finally 
fully described in terms of its radial coordinate, 

amplitude, phase, CTF value and background 

noise. 

3. I I. Combining datasets 

Datasets from the near and far sides of each tube 
were combined vectorially to make tube-averaged 
datasets and then the tube-averaged datasets were 
combined vectorially with each other to make the 
final dataset. In obtaining the tube-averaged 
datasets, the Fourier terms, FiJ{R, 1) (where i refers 
to the tube and j to the side), were weighted both by 
the image quality derived for the side, Qij, and by 

the appropriate CTF value, IT,j(R, 1)1, as follows: 

Background noise values, BKGiAR, I), were 
squared before summing: 

The next steps were to reindex each tube-averaged 
dataset to be consistent with a single axial repeat 
(obeying the helical selection rule: 1 = - 81 n + 
253 m (n = 2 n’) [22]), and to remove regions of 
strong overlap (involving the first Bessel function 
peaks) that occurred between certain pairs of 
layer-lines, the precise pairs depending on the 
helical selection rule of the tube in question. The 
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tube-averaged datasets could then be combined, 
weighting the Fourier terms from each tube by its 
length: 

and similarly for the associated background noise: 

BKG(R, 1)2 = C Lf BKGi (R 1)2* (11) 

The combined Fourier terms, corrected for the 
CTFs, were therefore 

F,(R 1) = 
W, 1) 

C GTiXR 1)z’ 
(12) 

(LA 

We note that measurements of the combined terms 
were obtained at essentially ali points out to the 
resolution limit, consistent with the helical sym- 
metry of the tube. A small fraction of terms was 
usually excluded from individual datasets because 
of overlap of Bessel function peaks on certain pairs 
of layer-lines. However, the equivalent (non-over- 
lap) terms would have been retained in other 
datasets, since different overlap patterns occur with 
tubes having different axial repeats. These differ- 
ences between members of the same helical family 
arise because of very slight variations in dimensions 
of the p2 surface lattice [ll]. 

3.12. PQ number 

Finally, to identify those Fourier terms which 
should be discarded from the combined dataset 
because the signal is weak or absent, it was impor- 
tant to obtain an estimate of the signal-to-noise 
ratio at each point along each layer-line. Based on 
the individual figures for amplitude, F, phase, $J, 
and noise, BKG, we estimated the point quality as 
follows: 

(13) 

To test how sensitively PQ measures the signal-to- 
noise ratio, it was useful to compare it to an alter- 
native measure: cos2+, which is 1 for terms in agree- 
ment with the centrosymmetric structure of the 

0.8 - 

~-~~~~~~~ Single side 
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Fig. 5. Average value of COS’~ for Fourier terms along the 
layer-lines plotted as a function of PQ’ value. The continuous 
line represents all the terms from the combined dataset, and the 
dashed line all the terms from a single side of one tube. cos’r$ 
should be 1 for the centrosymmetric structure, but has an aver- 
age value of 0.5 for random noise. Terms with high PQ’ numbers 
have average co&j values close to 1, while those with low PQ 
numbers have average co&J values closer to 0.5 - confirming 
that PQ’ can be used as a measure of the signal-to-noise ratio. 
The continuous curve rises higher at lower PQ’ values than the 
dashed curve does, showing that reduced errors in the estimates 
of the signal (F) and the noise (BKG) make the PQ’ number 
a more sensitive indicator after the images have been combined. 

For the purpose of the graph, PQ’ was calculated as F/m, 
where F is the amplitude and BKG is the background noise level 
associated with the Fourier term. In practice, however, we take 
account of the phase as well: PQ = ,/(2FZ cos2~/BKGZ), 
a more accurate measure of the signal-to-noise ratio than PQ’. 

tube and 0.5 for random noise. Fig. 5 (continuous 
curve) plots the average values of cos’ 4, taken 
from the combined dataset, for various modified 
PQ values (called PQ’, with the cos2 4 term in 
Eq. (13) removed so that the two estimates - PQ 
and cos’ 4 - are independent). The curve shows 
that cos’ 4 averages 0.5 for terms with PQ’ I 1 but 
rises to average 0.9 or higher for terms with 
PQ’ > 8, indicating that PQ’ is a sensitive indicator 
of signal-to-noise ratio’. PQ’ would therefore be an 

i PQ’ is similar to the q statistic used by Morgan et al. [20], 
but may be more reliable when small numbers of images are 
used because it takes advantage of an independent measurement 
of the background noise instead of one derived from the vari- 
ation between measured amplitudes from different images. 
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appropriate measure for many specimens. How- 
ever, the F lcos $1 used in deriving PQ [Eq. (13)] is 

a more accurate measure of the signal from the 
ACh receptor tubes than the F used in deriving PQ’ 

because F lcos 41 disregards the imaginary compo- 
nents of the Fourier terms, which disagree with the 

known centrosymmetric structure of this particular 

specimen. With ACh receptor tubes, therefore, the 
PQ number provides the most sensitive means of 

distinguishing between Fourier terms with high 

and low signal-to-noise ratio, taking account of 
their strength relative to the background noise and 

also their phase. _ 
Ultimately, errors inherent in the PQ measure- 

ments limit the ability to filter the good terms from 

the noisy ones. The errors decrease as more images 
are combined, since the estimates of signal and of 
background noise then become more reliable. The 

dashed curve in Fig. 5, representing the data from 

a single side of one tube, falls below the plot from 
the combined dataset because many terms having 

a low signal-to-noise ratio have been ‘mistakenly’ 

assigned high PQ’ numbers. As a result, the slope of 
the curve is almost flat in the region where cos* 4 

averages 0.5, confirming that PQ’ numbers from 
a single image are less sensitive in discriminating 

the signal from noise. 

3.13. Calculation of the structure 

Fourier terms, F,, having PQ numbers below 1.7 

were considered to be too close to the noise level to 
have any significance and were discarded from the 

final set of structure factor terms, which extended 
to a resolution of 8 A. A small fraction of additional 
terms were discarded, where the PQ number, aver- 

aged locally, was small. These terms were con- 
sidered inconsistent with the continuous nature of 
the Bessel .modulations along the layer-lines. A to- 
tal of 10 536 terms on $330 layer-lines remained, 
yielding an overall two-fold phase residual, GR, of 
8.6”. The real components of the remaining terms 
were incorporated in a Fourier-Bessel inversion to 
derive the helical density waves as a function of 
radius, and a three:dimensional map in sections 
parallel and perpendicular to the tube axis was 
calculated from the densities by Fourier synthesis 
in the standard way [26,29). 

4. Results 

An example of an image of an ACh receptor tube 

is shown in Fig. 6a. Individual receptors consist of 
five homologous membrane-spanning subunits 

(molecular masses: 50-60 kD) arranged symmetric- 
ally around a central axis, which delineates the 

pathway for the ions. Depending on the defocus 

conditions and the local pattern of overlap, the 
receptors may appear as rosettes when viewed 

down this axis (central portion of the tube) or give 
rise to striations when viewed from their sides 

(edges of the tube). The striations (apparent in 
Fig. 6a) arise mainly from the extracellular ends of 
the receptors, which protrude radially outwards 
from the membrane surface. 

The distortion corrections were carried out on 28 
images of ACh receptor tubes, 26 of which had been 

analyzed previously by dividing the tubes into 
whole repeats, i.e. without any such corrections 

being applied [22]. The tubes were selected on the 
basis of their straightness, uniformity in appear- 

ance, and the quality of their diffraction patterns 
(Fig. 6b). As described in Methods, lengths of tube 

consisting of whole axial repeats were first sub- 
divided into thirds: i.e. into segments on average 

about as long as they were wide. Each i-segment 
(total 225) was then fully aligned in three dimen- 

sions against the reference structure by determining 
the set of seven parameters: co,& repeat, x, Z, cp, and 
rscale (Figs. 2 and 3). Finally, the Fourier terms 
from each aligned f-segment were extracted to 

a resolution of 8 A and combined with the others to 
make a distortion-corrected dataset, which was 

used to calculate a three-dimensional map. 

4.1. Path of tube through the ice 

Fig. 7 shows a typical set of curves plotting the 

variations in x, rotation angle (e), out-of-plane tilt 
(o), repeat, and vscale. They were obtained from 
successive j-segments along the tube in Fig. 6a 
(aiternative curves for 0 and ‘repeat’, calculated 
from &segments, are also shown in Fig. 7b and 
Fig. 7d). This tube is slightly bent, as can be seen 
from the cup-shaped curve made by the displace- 
ments in the x-direction (Fig. 7a) and the corres- 
ponding changes in the rotation angle as a function 
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Fig. 6. ACh receptor tube embedded in amorphous ice and imaged at 10 400 A underfocus: (a) scanned image; (b) computed Fourier 

transform of the boxed-off area. r. In (a), the boxes labeled r, s and i enclose, respectively, a whole axial repeat, a i-segment, and 

repeat-long-tube-wide strips of ice on either side of the tube; the variations along this tube, due to different types of distortions, are 

plotted in Fig. 7; (b) shows a mirror-symmetric pattern of layer-lines that extend clearly only to a resolution of - l/35 A-’ (arrow) 

before the distortion corrections have been applied (but much further afterwards; see Fig. 4); the Fourier transforms summed from 

several areas equivalent to r and i were used to estimate, respectively, the CTF variations and background noise (see Section 3). Scale bar 

in (a) corresponds to 500 A. 

of tube length (Fig. 7b). The two curves in each of 
Fig. 7b and Fig. 7d, representing alternative esti- 
mates of 8 and ‘repeat’, respectively (see Section 3), 
are in good agreement with each other, as expected 
if the measurement inaccuracies are small. Other 
distortions present include variations in tilt, espe- 
cially towards one end of the tube (y > 9000 A; 
Fig. 7c), and an approximately linear shortening of 
the repeat distance at the other end (Fig. 7d). The 
radial dimensions of the tube also change by 
- 2%, making it about 15 A narrower at one end 

than the other (Fig. 7e). 

The more substantial changes in Figs. 7bFig. 7d 
are predominantly linear, consistent with the theor- 
etical descriptions of the distortions given above. 
However fluctuations on a finer scale are also ap- 
parent. These are most likely caused by higher 
order distortions than the ones we assumed, or by 
localized disturbances (in either case causing less 
signal loss than the assumed distortions). They are 
unlikely to represent measurement inaccuracies, 
since these have smaller effects (see below). Even 
shorter-range distortions are undoubtedly present, 
but not seen because they are localized within the 
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Fig. 7. Variations in: (a) x-position; (b) rotation (0); (c) tilt (CO); (d) ‘repeat’; and (e) r-scale plotted along the length of the tube shown in 
Fig. 6. Each circled point represents the value of the appropriate parameter at the center of a segment a third of the length of the whole 
axial repeat. The tube was composed of four whole repeats; hence twelve f-segments are represented. The values of 19 and ‘repeat’ at the 
center of each i-segment were calculated from the X- and z-locations of its top and bottom halves, after dividing the whole repeat into six 
parts (see Section 3). Values of 0 and ‘repeat’ at the midway positions were also calculated from the x- and z-locations of the successive 
f-segments (filled triangles; broken curves). 
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&segments. Since they extend over such short 
lengths, however, they are unlikely to result in 
significant displacements or signal loss, even if they 
are not taken into account (see Section 1). 

4.2. Magnitude of distortions 

The tubes were usually not visibly distorted, ex- 
cept perhaps for slight bending or changes in tilt 
(indicated by the changing pattern of striations at 
their edges). Yet the alignments of their &segments 
to the reference structure differed consistently, by 
amounts too small to be visible, when comparing 
successive segments along the tubes (Table 1). The 
x- and z-alignments of the segments (from which 
0 and ‘repeat: are calculated) differed, on average, 
by about 1 A; their tilts and twists differed, on 
average, by about 0.3” (corresponding to displace- 
ments of - 1.5 A); and their widths differed, on 
average, by about 0.8%. 

Furthermore, the segment-to-segment variations 
were in many instances greater than the amounts 
suggested by the tabulated figures. For example, 
whereas about half of the successive +-segments 
differed in their x-locations by less than 1.3 A (the 
median value listed in Table l), about one in eight 
differed by 4 A (the median plus standard devi- 
ation) or more. Also, tubes yielding small differ- 
ences in one parameter often yielded large 
differences in another. These departures from the 
average properties are of particular concern, since 
larger displacements have a disproportionately 
greater effect. 

Table 1 
Magnitude of distortions: differences between successive i-segments 

4.3. Measurement inaccuracies 

To assess the errors involved in measuring each 
type of distortion, we took the distortion-corrected 
datasets derived from three tubes (11 whole repeats) 
and divided each of them into two half-datasets 
made up from alternating points along the layer- 
lines. The five primary alignment parameters: x, z, 
o, cp and rscale (as in Table 1) were then deter- 
mined separately from each half-dataset, and the 
values obtained for equivalent whole repeats and 
&segments were compared. Table 2 lists, for each 
parameter, the median differences, the standard de- 
viations and the maximum differences found be- 
tween the two half-datasets. 

A notable result indicated by the table is that the 
errors associated with measurements from the t- 
segments are similar to those from the whole re- 
peats. For most of the parameters, the measure- 
ment errors only increase marginally as the 
segment size is reduced. The estimates for the z- 
locations in fact appear to become more accurate 
as the segment becomes shorter. The lack of im- 
provement of measurement accuracy with in- 
creased tube length should not be surprising, 
however, since the parameters vary by greater 
amounts over longer lengths of tube, counteracting 
the potentially greater amount of signal used 
in their measurement. Different short segments 
of an unevenly stretched tube, for example, 
would yield different values for the repeat, and 
the signal dominating the estimate for the whole 
repeat might come from only one of these short 
segments. 

x (A) 2 (4 (0 b&z) cp (dd’ 

Median 1.3 0.9 0.28 0.29 
S.D.d 2.1 1.1 0.24 0.31 

Range O&24.3 0.0-8.3 O&1.11 O.Gl.99 

“All the figures shown were calculated after each whole repeat had been aligned to the reference structure. 

bO.l” z 0.5 A, at the radius of the membrane. 

‘Differences in rscale between the widest and narrowest segments of each tube. 

dStandard deviation from the mean of the 150 measurements (28 in the case of r-scale). 

rscale’ 

0.008 

0.008 

0.003-0.032 
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Table 2 

Measurement inaccuracies: differences between parameters determined using different halves of the dataset 

Y (A, (II t deg) cp tdeg) rscale 

Whole repeat j Median 0.2 I 0.26 0.05 0.02 0.002 
segment 

S.D.” 0.16 0.15 0.03 0.02 0.00 1 
Maximum 0.66 0.45 0.12 0.07 0.003 
observed 

Median 0.29 0.10 0.07 0.04 0.002 

S.D.” 0.24 0.13 0.11 0.03 0.002 

Maximum 1.07 0.52 0.37 0.12 0.007 
observed 

“Standard deviation from the mean of 11 (whole repeat) or 33 (S-segment) measurements. 

Comparing the figures obtained for the t-seg- 

ments in Table 2 with those obtained in Table 1, 
we find that the measurement errors are small in 

comparison with the displacements caused by the 
distortions, and therefore the differences between 

successive segments listed in Table 1 represent dis- 
tortions, not measurement inaccuracy.’ 

4.4. Evaluation of single images 

The qualities of the datasets from single images 

could only be evaluated reliably using Fourier 

terms out to the first CTF zero (typically 
- & 8- ‘), because of the poor signal-to-noise ra- 

tio at higher resolution. Within this cut-off, every 

one of the distortion-corrected datasets yielded 
a two-fold phase residual, @a, better than that of 

the corresponding uncorrected dataset. The range 
of improvement was 0.14”-5.19”, and the average 
residual was 28.4” before correction and 27.0” after- 

wards (compared to 45” for random data). This 
represents a gain in signal retention of 9%, deter- 

’ We can divide the values in Table 1 into two components: 

a “real” component, reflecting distortions, and a component due 

to measurement inaccuracy. The “real” component is equal to: 

Area1 = Jdparameter’ - 2m.i.‘. where Aparameter is the value 

in Table 1 and m.i. is the measurement inaccuracy for the 

f-segments, from Table 2. Using typical values for each, dreal 

turns out to be approximately equal to Aparameter for all the 

parameters listed, indicating that the errors of measurement can 

be neglected. 

mined by calculating the signal-to-noise ratio in 

terms of QR: 

SfN = 
Jcos’ QR - sin2 QR 

fisin@, 
(14) 

Calculations using appropriate values in Eq. (4) 
suggest that this gain is about the amount one 

would expect at 20 A resolution, where much of the 
low-resolution data lies, if the maximum displace- 

ments produced by second-order distortions were 

reduced by the corrections from - 2.9 w to 
* 0.3 A. One can calculate further that the same 

corrections, at _ 10 A resolution, should lead to 
an improvement in the signal retention from 72% 
to lOO%, i.e. a gain of 38%. While the poor signal- 
to-noise ratios associated with single images makes 

it impossible to measure their gains at w 10 A 
resolution, such measurements can be made after 
the images have been combined and do in fact show 

a gain of _ 40% (see below). 

4.5. Improvements in the combined dataset 

Table 3 lists the average amplitudes and signal- 
to-noise ratios of the Fourier terms obtained from 
the combined dataset, before and after correcting 
the distortions. The results are shown for annuli at 
successively higher resolution, with the data being 
divided into separate Z- and R-sectors to reveal 
any significant differences parallel and perpen- 
dicular to the axis of the tube. To ensure a valid 
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Table 3 

Statistics of combined dataset before and after distortion correction 

Resolution range (A) Z-sector R-sector 

Published” Corrected Published Corrected 

IFW,lb S/W IFWI SIN IF.“gl SIN IF..nl S/N Gain” 

4623 21.2 2.89 27.0 3.06 13.9 2.29 14.1 2.41 5% 
23315 5.4 1.39 6.1 1.56 3.5 0.78 4.1 0.97 170/u 
15-11 2.3 0.72 2.7 0.93 2.1 0.46 2.1 0.57 29 % 
11-9 1.7 0.36 1.8 0.43 1.9 0.08 1.8 0.15 37% 

“From Ref. [22]. 

bAverage amplitudes of Fourier terms in annuli at successively higher resolution. All possible Fourier terms are included in each 

annulus. 

‘Average signal-to-noise ratios of the Fourier terms calculated as follows: 

SJN = J 2Q' ~ 
1 - Q” 

where 

Q, = &~Ffcos~ 4 - sin’ 4) 

LWF 
and the summations range over all layer-line terms in the given annulus and sector. The signal-to-noise 

ratio should be cc for pure signal and 0 for pure noise. In calculating the three-dimensional map, many terms were eliminated because 

they were below the PQ threshold (see Section 3). 

dGain, due to distortion corrections, in the average signal-to-noise ratio. 

comparison, both datasets contain all possible 
Fourier terms, including those that would be dis- 
carded later due to low PQ numbers. 

The comparison of the signal-to-noise ratios 
shows that the distortion corrections have brought 
about roughly equal improvements in both sectors. 
Moreover, the improvements have become greater 
with increasing resolution, as indicated by the 
slightly higher amplitudes (mainly in the Z-sector) 
in the higher resolution ranges, and by the percent- 
age gains (final column) in the signal retention over 
the noise. At 20 A resolution the gain is in the 
region of lo%, or a similar figure to the average 9% 
gain exhibited by the single images. However by 
10 A resolution (range: 1 l-9 A), the signal-to-noise 
ratios have improved by almost 40%, which is close 
to the figure calculated above assuming the distor- 
tions are predominantly second-order effects. 

4.6. Three-dimensional map 

The three-dimensional map was calculated as 
described in Section 3, using PQ numbers to select 
Fourier terms having significant signal-to-noise ra- 

tios. Features of secondary structure described pre- 
viously [22] are more clearly resolved as a result of 
the distortion corrections, and are more accurate, 
as judged by improvements in five-fold symmetry 
at several levels in the receptor. Fig. 8a gives an 
example of the details seen in a section normal to 
the pseudo-five-fold axis of the receptor at a tube 
radius of 338 A, i.e. at a level - 30 A from the 
membrane surface, before the distortion correc- 
tions had been applied. The locations of the two 
x subunits (aa and RJ and a neighboring 6 subunit 
are indicated [30]. Each subunit at this level is 
thought to contain three short a-helices running 
approximately normal to the membrane and which 
accordingly appear as three peaks of density (de- 
noted I, II, and III for as). These peaks are not 
expected to have identical features in comparing 
one subunit with another around the ring, because 
the two 2 subunits have different conformations 
[31], and the remaining (b, y, and 6) subunits have 
only 3641% amino acid identity to the CI subunit. 
Nevertheless, the degree of equivalence of the 
subunits and the resolution of the three peaks should 
improve as the signal-to-noise ratio gets better. 
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Fig. 8. Sections normal to the pseudo-five-fold axis of the receptor. through the putative ACh binding sites: (a) from the published 

structure [22], and (b) from the structure determined after correcting distortions. The five subunits together form a ring of density 

encircling a central pathway for the ions. At this level, three (cc-helical) rods are present in each subunit, running approximately parallel 

to the pseudo-five-fold axis. In the sections, these rods give rise to three peaks of density (I, II, and III) surrounding a central depression. 

Almost all the peaks (continuous contours) are better resolved after distortion correction, and the improvements appear to take place 

approximately equally in the directions parallel to (vertical) and perpendicular to the tube axis. The subunit assignments (a?, x6, 6) are 

based on electron crystallographic labeling studies [24,30]. The vertical dimension of the sections corresponds to 108 A. 

Fig. 8b, which is of the same section after the 
distortion corrections have been applied, demon- 
strates that major improvements are indeed 
achieved. Almost all of the peaks have become 
better resolved as a result of the distortion correc- 
tions, enhancing the similarities in appearance of 
the different subunits. Particularly noticeable is the 
change in appearance of the 6 subunit, which has 
only one clearly marked peak before the distortion 
corrections have been applied (Fig. 8a), but has 
become more like the other subunits afterwards 
(Fig. 8b). The new features must reflect the actual 
structure, since the distortion corrections do not 
bias the 6 subunit towards looking like the other 
subunits or being composed of three peaks. 

The peaks of density inOFig. 8 are separated from 
each other by - l&14 A, so the improvement in 
resolving them must be due to increased signal at 
high resolution. Notably, the improvement has 
been achieved without any enhancement of the 

high-resolution terms by applying a temperature 
factor weighting. 

5. Discussion 

Arrays of biological molecules suitable for analy- 
sis by electron microscopy rarely, if ever, align 
themselves on a perfect crystal lattice over very 
long distances. For various reasons, the arrays con- 
tain long-range disturbances, or distortions, which 
need to be measured accurately and corrected be- 
fore the structure of an average molecule can be 
determined to the highest possible resolution. With 
two-dimensional crystals, bending in the plane of 
the array is usually a significant distortion, and 
corrections for this effect have lead to substantial 
gains in the signal retrieved [S]. With tubular crys- 
tals, gross amounts of bending have also been cor- 
rected [3], giving rise to improvements, but only at 
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low resolution. In the present study, we have 
examined other kinds of distortions in tubular 
crystals, in addition to bending, with a view to 
establishing a general correction procedure that 
will ultimately allow atomic resolution to be 
achieved. 

meters can be refined, and in terms of facilitating 
direct assessments of the errors involved. 

5.1. Segment-by-segment correction 

The method we used to measure and to correct 
the distortions was to divide the tubes into short 
segments, align each segment in three dimensions 
to a reference structure, and then add the segments 
together after the misalignments had been re- 
moved. Seven parameters had to be defined to 
describe completely the alignment of each segment 
in three dimensions, and an iterative procedure 
(Fig. 2) was developed to determine them with the 
highest possible accuracy. In applying the proced- 
ure to the ACh receptor tubes, we showed that all of 
the parameters could be measured with an accu- 
racy sufficient to plot reliably their variations along 
the length of the tube (Fig. 7). The three-dimen- 
sional map of the ACh receptor, obtained after 
taking these variations into account, revealed more 
clearly elements of secondary structure and showed 
a greater degree of equivalence between neighbor- 
ing subunits (Fig. 8), as expected from the improve- 
ments in the signal-to-noise ratio. Importantly, the 
extent in resolution of 8 A after applying the correc- 
tions appears to derive mainly from the small num- 
ber of images and their limited quality. The method 
itself seems to have recovered almost all of the 
signal lossOdue to distortions to a resolution well 
beyond 8 A, as discussed below. 

The actual procedures devised were such that 
measurement inaccuracies would be mostly due to 
random, rather than systematic errors, and com- 
pensatory in going from one segment to the next. 
They should also apply if, for example, a tube has 
been judged to have a different axial repeat than 
one that is strictly correct. By dividing the tube into 
short segments and independently aligning each 
segment (particularly its position along and azi- 
muthally around the axis), the tube would be recen- 
tered before the displacements due to the use of an 
incorrect repeat became large. Therefore, the errors 
incurred and consequent signal losses would be 
minimal. 

5.2. Signal gains at high resolution 

While the signal losses caused by the distortions 
were minor at low resolution, they increased rap- 
idly as a function of resolution, so that correcting 
them resulted in an almost 40% gain in the signal- 
to-noise ratio near the 9 A limit (Table 3). The 
ability to correct distortions, and so retain the 
signal, will therefore be critical in any attempt to 
extend the structural analysis to even higher resolu- 
tions. If the same approach is to be taken as we 
have described, it will be important that the losses 
due to the residual distortions within the i-seg- 
ments (which remain uncorrected) remain small, 
and that any increased losses associated with extra 
errors in aligning the &segments (rather than whole 
repeats) do not begin to outweigh the gains made 
by fitting the distortions more closely. 

In correcting distortions by complete three-di- Table 4 gives estimates of the distortion-induced 
mensional alignment, segment-by-segment, we take signal losses that would be incurred in whole re- 
advantage of the fact that tubular crystals contain peats and in 5 segments at a resolution of 5 A by the 
an appreciable amount of information per unit different kinds of distortion and alignment errors, 
length, and make optimal use of the symmetry based on their observed magnitudes (Tables 1 and 
present. Only features consistent with the inherent 2) and the equations in the Appendix. The “typical” 
helical symmetry are reinforced when the informa- values shown are those associated with the median 
tion from many different tubes are averaged, where- displacements in Table 1, whereas the “strong” 
as any non-helical features present become weaker values are those associated with displacements 
in the same sense as would, e.g., statistical noise. equal to the median plus the standard deviation. 
Furthermore, most of the manipulations are done Signal losses accompanying two-dimensional dis- 
in reciprocal space, which is an advantage in terms tortions (bending and scale changes) cause equal 
of simplicity and the speed with which the para- signal loss in all Fourier terms at a particular 
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Estimates of % signal loss” at 5 A resolution due to different types of distortion 

Bend H Stretch ‘repeat’ Tilt” ru Twist‘ CJ Flattening 

rscale 

Whole TypicaId 72 47 92 82 3 

repeat Strong’ 86 79 , __ w 83 II 

4 segment Typical 2 1 15 3 3 

Strong 15 4 32 12 II 

“In the direction of maximum displacement. 

“Bessel order = 10. 2 = 0.2 A, X = 0.005 k ’ (beginning of a near-meridional layer-line) 

‘Bessel order = 430. 

dDue to a distortion of median magnitude. 

‘Due to a distortion of large magnitude (median plus standard deviation). 

‘Fourier amplitudes have the wrong sign and 22% of the correct magnitude. 

resolution in the direction of displacement, making 
the figures for these distortions readily appreciated. 
However, signal losses accompanying three-dimen- 
sional distortions (variable tilt and twist) depend on 
other factors as well, including the Bessel order, n, 
of the Fourier term and (in the case of tilt) the 
location of the term in reciprocal space; the major 
losses here tend to be confined to a relatively smaller 
proportion of the data. Bearing in mind these limita- 
tions in comparing the different estimates, the table 
suggests that the three- and the two-dimensional 
distortions would contribute roughly equally to loss 
of signal at 5 A resolution, and that whereas each of 
the four major distortions is likely to cause unac- 
ceptable signal loss if left uncorrected (i.e. tubes 
analyzed as whole repeats), acceptable losses (in gen- 
eral, < 15%) should be achievable if corrections are 
applied by dividing the repeats into f-segments. 

Flattening of the tubes in the direction parallel to 
the electron beam is the only potentially serious 
distortion that cannot be corrected straightfor- 
wardly by alignment of short segments. However, 
the signal losses due to flattening appear negligible 
anyway in the tubes we have selected (Table 4). We 
also found that the variations in vscale along the 
length of the tube were very small (Table l), and the 
differences in image quality, Qi, between the near 
and far sides were, on average, less than 10%. These 
observations suggest that flattening (or uneven 
compression of the two sides) was not a significant 
effect, and hence this type of distortion can largely 
be avoided by applying stringent selection criteria. 

In Table 5, we estimate the effect of measurement 
inaccuracies on the signal losses at 5 A resolution, 
in a similar way as was done for the distortions, 
using the observed values for the different types of 
inaccuracies given in Table 2. As was the case with 
the distortion estimates, signal losses due to inac- 
curacies in measurement of the two-dimensional 
parameters depend only on resolution in the direc- 
tion of the inaccuracy, whereas the losses due to 
inaccuracies in measurement of the three-dimen- 
sional parameters depend on additional factors. 
The Table suggests that the signal losses accom- 
panying the measurements would all be relatively 
minor when whole repeats are an’alyzed, and that 
the losses would be mostly higher, but still minor, 
when the repeats are divided into i-segments. The 
only case where the inaccuracies could become 
serious, after dividing the repeats into t-segments, 
are in the measurement of tilt. However the large 
inaccuracies in tilt were rare, and the extreme losses 
listed in the Table are restricted to a small region of 
the Fourier transform even in those rare cases. 

5.3. Properties of distortions in tubular crystals 

The ACh receptor tubes were ideal specimens for 
the distortion analysis since they had already been 
well characterized in earlier studies without any 
distortion corrections being applied [l 1, 12,231. 
One property of these tubes revealed by the present 
study was that the three-dimensional distortions, 
variations in out-of-plane tilt and twist, resulted in 
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Table 5 
Estimates of % signal loss at 5 A resolution due to measurement inaccuracies 

Whole 
repeat 
4 segment 

Typical’ 
Strong’ 
Typical 
Strong 

Bend” 0 

3 
11 
I 

21 

Stretchb ‘repeat’ 

5 
13 

1 
4 

Tilt’ w Twistd cp 

6 1 
15 4 
12 4 
68 13 

“Estimated from errors in x-location, Table 2. 
‘Estimated from errors in z-location, Table 2. 
‘Bessel order = 10, Z = 0.2 A, X = 0.005 k ‘. 
dBessel order = 430. 
‘Due to an inaccuracy of median magnitude. 
‘Due to an inaccuracy of large magnitude (median plus standard deviation), 

displacements that were comparable in magnitude 
to the displacements caused by the two-dimen- 
sional distortions, bending and changes in scale 
(Fig. 7; Table 1). Another property was that these 
different kinds of distortion each individually were 
often strong enough to cause appreciable signal 
loss. 

That no particular distortion had a dominating 
effect may to some extent have reflected our selec- 
tion criteria, in which the diffraction patterns of the 
tubes were required to be mirror-symmetric and 
appearing equal in quality in all directions. But it 
also seems likely that the properties we observed 
are general for specimens of this type. Because of 
the cylindrical symmetry and the freedom of move- 
ment in the ice, flexibility in one sense is probably 
associated with flexibility in another. Hence if the 
tubular crystals being analyzed bend readily, as one 
can observe directly from the micrographs, they 
almost certainly vary substantially in tilt and twist 
as well. This argument adds weight to the con- 
clusion above that it is important, in correcting 
distortions in tubular crystals, to take account of 
the three-dimensional distortions at the same time 
as the (more obvious) two-dimensional ones. 

5.4. Prospects 

The figures in Tables 4 and 5 suggest that the 
improved fitting to the reference structure achieved 
by dividing whole repeats into thirds results in 
signal gains which will continue to outweigh the 
losses due to measurement errors until a resolution 

well beyond 5 A is reached. Assuming the max- 
imum displacements due .fo the distortions are re- 
duced from 2.9 A to 0.3 A by the cortections (see 
Section 4), it can be shown that at 3.5 A resolution 
only N 3% of the signal should be lost to distor- 
tions, while the gain relative to the signal from 
a whole repeat should be w 400%. The distortion 
correction procedure described should therefore 
provide an appropriate way to extend the struc- 
tural analysis of tubular crystals, such as we have 
examined, to atomic resolution. 

The attainment of this resolution would, how- 
ever, require much better images than the standard 
120 kV images used here. Pilot experiments have 
been conducted with a 400 kV instrument and with 
a 300 kV field emission instrument incorporating 
a liquid-helium cooled stage, to determine the rela- 
tive effects of better electron optics, reduction in 
multiple scattering and the additional protection 
from radiation damage at liquid helium temper- 
atures. Images recorded with the latter instrument 
(A. Miyazawa, Y. Fujiyoshi, R.B. and N.U., unpub- 
lished) have indeed yielded higher signal-to-noise 
ratios (average Qi: 0.30 (n = lo), compared with 
0.24 (n = 26) from the 120 kV images), indicating 
that major improvements in the microscopy are 
possible. 

6. Conclusion 

A procedure has been developed for correcting 
distortions in tubular crystals which independently 
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aligns short tube segments against a reference 
structure, allowing correction of distortions in all 
three dimensions while maintaining high accuracy 
in their alignment. Application of the procedure to 
ice-embedded ACh receptor tubes shows that: 

(a) The three-dimensional distortions (variations 
in out-of-plane tilt and twist) and two-dimensional 
distortions (bending and scale changes) are about 
equally important. 

(b) Division of the tubes into segments about 
equal to their widths allows retention of almost all 
of the available signal, reducing the losses due to 
distortions from high levels without significantly 
increasing the signal losses due to increased inac- 
curacy in the alignments. 

(c) The corrections improve the signal-to-noise 
ratios of the Fourier terms from single tubes, and 
from the combined data, by - 10% at low resolu- 
tion (20 A). This improvement increases steadily 
to -40% by 9 A resolution. 

(d) The finer structural details are more clearly 
resolved as a result of these improvements, and 
extrapolations suggest that much greater gains in 
signal retention should be achieved when better 
images become available. 
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Appendix A 

This section describes some of the more common 
types of distortions in tubular crystals and derives 
formulae for the signal losses they would incur. The 

tube is considered to be in the xy plane, with the 
y axis parallel to the tube axis at the origin. With 
purely two-dimensional distortions (e.g. bend, 
shear, or stretch), the positions (x’, y’) of each point 
in the distorted tube are related to the positions 
(x, y) of that element in the undistorted tube by 
some rule of transformation - the rule describes the 
distortion (Fig. 9). Three-dimensional distortions 
like tilt and twist can often be described more 
readily by examining their effects on the phases in 
reciprocal space. 

A.1. Bend in the image plane 

If the axis of the tube follows the path of a circle 
of radius R,, then the location of every point in the 
tube can be described by 

(x’ - RJ2 + Y’~ = (x - RJ2, 64.1) 

x’ = (x - R,) cos 

64.2) 

(A.31 

Tubes which are strongly bent are never analyzed. 
For tubes with a small amount of bend, R, is much 
greater than both x and y, so the above equations 

Y 

KY) 

bend distortion 
- 

: 

0 W,Y') 

I- X’ 

Fig. 9. Relation between an undistorted tube (left) and a dis- 

torted one (right). Each point (x, y) in the undistorted tube is 

moved by the distortion (bend in this case) to the point (x’, y’). 

The relation between (x’, y’) and (x. y) is the transformation rule 

of the distortion. 
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can be simplified: 

Y’ = Y (A.4) 

(A.3 

Expanding the cosine into a power series and tak- 
ing only the first term, 

Y2 
Ax== (A.6) 

showing this to approximate a second-order distor- 
tion (see above). The displacement, Ax, is wholly in 
the x direction, giving the greatest signal losses for 
Fourier terms far from the meridian (large X). 
Fig. la shows the signal loss as a function of seg- 
ment length for a second-order distortion like bend. 

A.2. Stretch along the tube axis 

A linear stretch: 

y’ = by (A.7) 

is not a distortion; it is a misalignment of the repeat 
distance, which is the parameter describing the 
axial scaling of the tube (see Section 3). A second- 
order stretch: 

Y’ = Y + b w(y) y2, b4.8) 

where sgn(y) is the sign (positive or negative) of y, is 
the simplest axial stretching distortion, giving dis- 
placements of 

y’ - y = Ay = b sgn(y) y2, (A.91 

and Fig. la applies. Since the displacements are 
wholly in y, the greatest signal losses will accrue for 
terms far from the equator (large Z). 

A.3. Twist 

As with stretch, a linearly changing twist in 
a tube: 

cp’ = ‘PO +fv (A.lO) 

(where cp’ refers to the azimuthal rotation of the 
actual tube and cpo refers to the undistorted model) 
represents a misalignment of the axial repeat dis- 
tance, not a distortion. Once again, the distortion is 

at least a second-order effect: 

cp’ = CPO +fsidv) Y’, (A.ll) 

giving 

cp’ - cpo = Aq =fsgn(Y) Y’. (A.12) 

Instead of calculating the Ax and Ay displacements 
this causes, we can calculate directly the effect on 
the phases of the Fourier terms: the phase error 
(A& Eq. (1)) on a Bessel order II layer-line, due to 
an azimuthal misalignment of Aq, is n Aq. So the 
signal retention on that layer-line can be calculated 
as 

Fraction retained = 1 
f/2 

p 
I 

cos WY’) dy. (A.13) _ 
f/2 

This is the same integral as Eq. (4) (plotted in 
Fig. la), except that the Bessel order, n, replaces the 
factor 2x11 within the cosine’s argument. At 5 A 
resolution 2x/A is only 1.25. However, the max- 
imum value of n at this resolution can be high (e.g. 
430 for an ACh receptor tube), so very small dis- 
placements in twist may be amplified by high Bessel 
orders into having a large effect. 

A.4. Variable tilt 

Unlike the previous examples, a linearly chang- 
ing tilt angle: 

w’ = w() + ty (A.14) 

is a distortion, representing bend out of the object 
plane, and gives a phase error (see [26]): 

A+ = .(arctan(y) 

_ arctan ( Z sin(o0 + ~YI 1) x ’ 
(A.15) 

where Z and X are the reciprocal distances along 
and perpendicular to the meridian in the transform, 
respectively. The signal retention is therefore: 

Fraction retained = a ~~~~ cos (n(arctanrq) 

_ arctan Zsinb0 + ry 
X 

dy. (A.16) 
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The phase errors and signal loss are greatest when 
u. is zero. Assuming that o. is close to zero and 
that the change in tilt ( = ty) is small, the signal 
retention can be approximated as 

Fraction retained = f [I:, cos (*) dy 

= 
ntZ& ’ 

(A.17) 

The relation between signal retention and segment 
length is typical of a first-order distortion, and is 
plotted in Fig. lc. The signal retention drops much 
more quickly than it would for a second-order 
distortion (Fig. lb), but with short segments most 
of the signal is retained. The loss of signal is worst 
near the beginning of each layer-line (low X), but 
improves further along the layer-line (larger X). In 
fact, the signal loss from variable tilt is more con- 
centrated in a small part of the transform than is 
the case with most other distortions, being most 
pronounced in terms with high Z and n/X values. 

A.5. Shear 

A constant shear perpendicular to the axis of the 
tube is also a first-order distortion, and may be 
described as 

Y’ = y, (A.18) 

x’ = x + ay, (A.19) 

where the factor a describes the amount of shear. In 
practice, however, a shear perpendicular to the tube 
axis is treated by the programs as a rotation of the 
tube in the image plane. If the tube is rotated back 
so that its axis once again lies on the y axis, the 
shear will now look like 

y'=y+x &F (A.20) 

(A.21) 

That is, by rotating the tube, the shear is converted 
from being perpendicular to the tube axis into 
being parallel, with a smaller magnitude. The ap- 

parent scale change in the x-direction (Eq. (A.21)) 
will be absorbed in the rscale parameter, so the 
total displacement and signal loss will be in the 
y-direction only: 

Ay = x 
J&f 

Ay is a function of x, not y, so the signal retention 
can be expressed as 

Fraction retained = Ii_ _-I cos (1YT$) dx 

(A.23) 

where r represents the radius of the tube times 
rscale. The signal retention is independent of seg- 
ment length. Eq. (A.23) shows that unless UY is 
larger than - 0.5 A (in which case the shear is 
likely to be noticed and the tube discarded), almost 
100% of the signal will be retained at 5 A resolution 
without further corrections being necessary. 

A.6 Flattening 

An unflattened tube can be thought of as a set of 
concentric cylinders, each representing the mass at 
a given radius from the tube axis. When flattened, 
each of these cylinders may be thought of as having 
been squeezed to become elliptical in cross-section. 
The length of the major axis of the ellipse will be 

a(r) = rscale(r)r, (A.24) 

where r refers to the radius of the unflattened cylin- 
der and rscale(r) is the flattening ratio at that 
radius. The flattening ratio should change with 
radius to keep the distances between the concentric 
cylinders constant before and after flattening. That 
is, if one cylinder has a radius of 250 A and the 
other has a radius of 380 A, then the major axes of 
the ellipses they flatten into must also differ in 
length by 130 A. So, given the flattening ratio at 
one radius (rscale(r,) for the radius ro), we can 
calculate the rscale for any other: 

rscale(r) = 1 + : (rscale (ro) - 1). (A.25) 
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At rscales near 1, the flattening of any one concen- 
tric cylinder will approximate a change in x-direc- 
tion scaling: 

x, = =W9 x 
rscale(r,) ’ 

(A.26) 

where x is the expected position of a point on the 
cylinder, x’ is its real position after flattening, and 
the scaling change, rscale(r), is a function of the 
radius of the concentric cylinder. The rscale(r,) in 
the denominator is a partially corrective demagnifi- 
cation which will be performed automatically by 
the analysis programs, because they interpret a flat- 
tening of the tube as an increased magnification in 
the x-direction. We are allowed to call this appar- 
ent increase in magnification rscale(rO) if we pick 
the proper radius r. for Eq. (A.23 so that rscale(r,) 
equals the apparent increase. 

Hence, the flattening-induced displacement, 

dx(x,r)=x’-x=x(~~~~~~)-l), (A.27) 

is a function of both x and r, the radius of the 
unflattened concentric cylinder. To calculate the 
fraction of signal retained, we should integrate over 
both of these parameters when applying Eq. (2): 

2 

s 

*.., 
Fraction retained = dr 

r ma2 - rmin2 *m,n 

2 

s 

rmnl 
= dr 

r,,,a - rmid *“I,, 

I 

X s ( cos 27rx(r - ro) (1 - rscale(ro)) 

A, rscale(r,) r > 
dx, (A.28) 

0 

where r,,, and r,,,i,, refer to the outer and inner radii 
of the unflattened tube. The fractional signal reten- 
tion is plotted as a function of rscale(r,) in Fig. Id. 
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