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ABSTRACT Well-ordered tubular crystals of acetylcholine receptor were obtained from sus- 
pensions of Torpedo marmorata receptor-rich vesicles. They are composed of pairs of oppo- 
sitely oriented molecules arranged on the surface lattice with the symmetry of the plane group 
p2 (average unit cell dimensions: a = 90/~, b = 162 ~,, 3' --- 117°). The receptor in this lattice 
has an asymmetric distribution of mass around its perimeter, yet a regular pentagonal shape; 
thus its five transmembrane subunits appear to have different lengths, but approximately 
equal cross sections. The tubes grow by lateral aggregation on the vesicle surface of ribbons 
of the paired molecules. Both ribbons and tubes were sensitive to dispersal by the disulphide 
reductant, dithiothreitol. This observation and other evidence suggest that the basic pairing 
interaction in the tubes may be that of the physiological dimer, involving contact between tS- 
subunits. 

Nerve cells transfer signals at chemical synapses by releasing 
neurotransmitters from their terminal regions and inducing a 
change in the permeability to ions of specific receptors in the 
postsynaptic membranes of communicating cells. The nico- 
tinic acetylcholine receptor is an example of such a receptor. 
It is a pentameric membrane protein composed of four poly- 
peptide chains, assembled with the stoichiometry a2/33,~ (re- 
viewed in references 6, 8, 16, 22). The amino acid sequences 
deduced from recent cDNA sequences (7, 10, 19, 20) indicate 
molecular weights of 50,000 (a), 54,000 (/~), 56,000 (30, and 
58,000 (6), and show considerable homology between the 
chains (21, 23). The assembly in the bilayer forms a ring, the 
central axis of which is thought to delineate the ion-selective 
channel (4, 18). In the native membranes of Torpedo elec- 
troplaques, these molecules normally exist as dimers, paired 
through disulphide bonds between the ~-subunits (5, 14). 
Dimers of receptors, often grouped in double rows, can be 
seen in quick-frozen deep-etched postsynaptic membranes of 
the electroplaque (15). 

The acetylcholine receptor is unique among all receptors in 
the extent to which its biochemical and pharmacological 
properties have been characterized, yet little direct informa- 
tion is available concerning its three-dimensional structure. 
Crystallographic analysis has been carried out of membrane- 
bound receptors ordered in planar sheets (24) and in tubes (3, 
17); also, images of individual receptors have been enhanced 
by correlation averaging (27, 28). However, the resolution 
and accuracy of the molecular details so far obtained have 
been limited by the quality of such preparations. 

We report here on the properties of tubular crystals grown 
in suspensions of receptor-rich vesicles, which were prepared 
from the electric organ of Torpedo marmorata. Tubes appar- 
ently form by lateral aggregation on the vesicle surface of 
ribbons of paired receptor mc'ecules, morphologically similar 
to those found on quick-frozen postsynaptic membranes. 
Image analysis of selected tubes enabled us to derive a map 
of the structure of the receptor in projection. 

MATERIALS AND METHODS 

Isolation of Acetylcholine Receptor-rich Vesicles: Mem- 
branes enriched in receptors were prepared from freshly killed and dissected 
Torpedo marraorata (Marine Station, Arcachon, France). Typically, 80 g of 
electric organ was cut into small pieces, washed, and then homogenized (Sorvall 
orani-raixer [E. I. Dupont de Neraours & Co., Inc., Newton, CT]; 2 rain at 
maximum speed) using 135 ral of isolation buffer (400 raM NaCl, 50 ~tM 
phenylraethylsulphonyl fluoride, 20 mM phosphate buffer, pH 7.4). After 
centrifugation (6,000 rpra for 10 rain in a Sorvall JA-14 rotor), the supernatant 
was passed through two layers of  cheesecloth. The filtrate was centrifuged 
(20,000 rpra for 30 rain in a Beckman Ti45 rotor [Beckman Instruments, Inc., 
Palo Alto, CA D which produced a pellet consisting of a loose white layer 
overlying a small, yellowish corapacted base. The upper layer was resuspended 
in 40 ml of isolation buffer, using a Potter homogenizer (Arthur H. Thomas 
Co., Philadelphia, PA) with a tightly fitting teflon pestle, and centrifuged again 
(30,000 rpra for 40 min in a Beckman Ti45 rotor). The second high-speed 
pellet was resuspended as before in 20 ml of crystallization buffer (100 raM 
Tris-HCl, pH 6.8) and then diluted further to ~ l  rag/ral (total protein) to yield 
the final vesicle-containing suspension. This suspension contained a significant 
proportion of nonreceptor material. However, additional purification by, for 
example, sucrose gradient centrifugation, did not lead to enhancement of tube 
formation and therefore was not routinely carried out. All steps of the isolation 
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procedure were carried out at 4°C, using reagent grade chemicals and double
disti l led water.

Crystal l ization :

 

2-ml al iquots of the f inal vesicle-containing suspen-
sion were di luted in crystal l ization buffer over a x 10 range and incubated in
sealed glass bottles at temperatures of 4-17°C . Solutions were monitored by
withdrawing -20-p1 samples every 2 or 3 d and examining the contents by
electron microscopy using negative stain. Tubes appeared reproducibly within
these temperature /di lution ranges after a period of 3-4 wk.

Electron Microscopy and Image Processing:

 

specimens were
appl ied to freshly glow-discharged carbon support grids and negatively stained
with 2% sodium phosphotungstate (pH 7 .2) . They were examined at 100 kV
with a Phi l ips EM400 electron microscope equipped with a low-dose kit.
Electron micrographs were recorded on Kodak 50163 f i lm at a magni f ication
of 28,500 and with a total electron dose of less than f ive per square angstrom .
The magni f ication was cal ibrated using negatively stained catalase crystals as a
standard (26) . Fi lms were developed in ful l strength Kodak D19 developer for
8 min .

Prel iminary assessment of the tube images was by optical di ffraction . We
saw two kinds of di ffraction maxima: a set of strong peaks arranged on a near-
to-hexagonal lattice and a set of weak "superlattice" peaks at points midway
between the strong ones . Several of the "superlattice" peaks became more
prominent relative to the others when the tubes were ti lted (Fig. 1) ; however,
they were sti l l visible without any ti lt ing-the view we consider in this paper.
The presence of the "superlattice" peaks, and a high degree of mirror symmetry
about a vertical axis (see Fig . 7) , were taken to indicate good preservation of
the unti lted tubes. Uni form staining and low electron doses were needed to
reveal and retain these features .

Further analysis of the best-preserved tubes was by computer . Selected areas
were converted into two-dimensional arrays of optical densit ies by using an
automatic microdensitometer (Perkin-Elmer Corp . , Eden Prair ie, MN) with
step and spot sizes of 25 Am (equivalent to 8 .77 k at the specimen) . These
arrays were made up to a standard size of 512 x 256 . Fourier transformation
and synthesis calculations were then carried out as described (9, 25) to provide
single-side f i ltered images and projection maps .

In deriving f i ltered images we made the mask size in the computed transform
suff iciently large to include al l the intensity associated with each peak . This
enabled us to examine closely the structural variation across the width of a
tube, due, for example, to non-uni form or incomplete f lattening . Based on the
lateral variation of the stain and the projected center-to-center separation of
individual molecules, the f lattening appeared to be asymmetric, as found with
large spherical viruses observed in simi lar condit ions (11) . Most frequently the
cross section appeared to be of the form shown in Fig . 2, although an exact

FIGURE 1 Optical transform from a tube ti lted by 23° to the
incident electron beam. Peaks from just one side have been out-
l ined to show "superlattice" peaks (circles) which l ie at posit ions
midway between the major peaks (squares) . Several of the 'super-
lattice" peaks become sl ightly stronger upon ti lt ing, which makes
them more visible than they are in the transforms from unti lted
tubes (Fig. 7) . Scale : 1 cm = 0 .0076 A ' .

prof i le can only be guessed at . Supporting this deduction, stain accumulation
was usual ly greatest near the edge of a tube, rather than near the middle (as it
would be i f the cross section were an el l ipse) , the separation and stained
appearance of molecules was more variable on one side of a tube than the
other, and the separation of molecules on the variable side was greatest in a
zone near the edge . By comparing f i ltered images of the same tubes ti lted in a
particular sense by two di fferent angles, we determined which side was upper-
most (i .e . , nearest the electron source) and hence the absolute hand of the
surface lattice (see Fig . 8 B) . This experiment conf irmed that the side facing the
carbon support was general ly the most uni form one; it was also the least
sensit ive to radiation damage (results not shown) . For subsequent analysis we
selected only the uni formly f lattened sides of tubes.

Fourier transforms were computed from the central ( -2,500 x 800 .RZ )
regions (see Fig . 2) , giving single sharp peaks which we f itted by a least squares
procedure to a regular two-dimensional net. Examples of single-side transforms
were thus obtained in which no peaks deviated from the net points by more
than -3% of the unit cel l dimensions of the net (Table 1) . The accuracy of this
f it is comparable to that of extensive crystal l ine sheets (see reference 1) .
Projection maps were derived from such examples, using the ampl itude and
phase values col lected at the net points (25) . Peaks were wel l sampled because
the transform dimensions were typical ly about four times that of the image
density array . Those peaks with ampl itudes less than 1 .5 times the mean
background level were excluded from the synthesis, and transforms were not
used i f net points corresponding to the two sides of a tube overlapped .

FIGURE 2

 

Schematic diagram of the l ikely cross section of many
of the tubes, as suggested by the stain distribution and projected
center-to-center separation of individual molecules seen in f i ltered
images . Examples were found in which the side facing the carbon
support f i lm (bottom) appeared uni formly f lat and evenly stained
over the entire region within the vertical broken l ines ; structure
factors (Table 1) and projection maps (Fig . 9) were derived from
such regions .

RESULTS

Formation of Tubes
Vesicles init ial ly were 0.5-1 .5 jm diam with receptors

densely packed but apparently organized randomly over their
surfaces . The f irst clearly identi f iable aggregates were observed
only after periods of incubation (see Materials and Methods)
of 3-4 wk . These consisted of paired molecules al igning
l inearly and forming double rows or ribbons over the vesicle
surface (Fig. 3) . Short, poorly ordered tubes were also pro-
duced at this stage (Fig. 4a) . After a further 1-2 wk the tubes
became better ordered and longer (up to 3 um ; Fig. 5) , and
their width remained fair ly constant (800-1,200 A) . Accom-
panying elongation, the size of the nontubular regions tended
to become smal ler, as i f receptors in the crystal l ine lattice
were being recruited from those already present in the same
vesicle .

A characteristic feature of the tubes is the extensive striated
zone that appears at their edges (Figs . 46, 5, and 6) (3, 17) .
This corresponds to protein protruding from the membrane
and indicates that the receptor is oriented on the tube surface
with its synaptic ( i .e . , extracel lular) side pointing outwards
(17, 18) .

Both ribbons and tubes dispersed completely after incuba-
t ion (8 h at 4°C) with smal l amounts (1 mM) of dithiothreitol ,
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FIGURE 3 Vesicles with ribbons of paired receptors extending across their surfaces. The incubation conditions were 3 wk at 
17°C. Bar, 0.t pro. x 150,000. (inset) Bar, 0.1 /Lm. x 270,000. 
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TABLE I 
Structure Factors and Location Errors of Transform Peaks from Flattened Tubes 

Tube A Tube B 

h k Amplitude Phase* & Y* & X Amplitude Phase ~ Y ~ X 

-1  4 12.1 4 -0.00002 0.00006 13.3 0 0.00001 0.00013 
0 2 9.5 185 0.00002 0.00006 8.2 185 0.00005 -0.00010 
0 3 1.3 143 0.00006 -0.00023 2.4 182 -0.00007 0.00028 
0 4 8.7 186 -0.00001 0.00003 10.3 181 0.00004 -0.00005 
1 - 2  9.1 356 0.00004 0.00019 6.0 7 0.00001 0.00023 
1 - t  4.2 353 -0.00001 -0.00013 3.0 4 -0.00003 0.00025 
1 0 13.0 187 0.00002 0.00011 11.6 184 -0.00000 -0.00002 
I 2 8.8 179 0.00001 -0.00031 10.9 179 0.00000 0.00003 
1 3 3.2 178 -0.00001 0.00002 3.0 170 0.00001 0.00015 
2 - 4  6.3 181 0.00002 0.00014 7.2 185 -0.00002 0.00000 
2 - 3  5.4 182 0.00000 -0.00015 4.6 182 0.00004 -0.00013 
2 - 2  9.0 1 -0.00002 -0.00001 8.5 358 0.00000 -0.00005 
2 0 8.0 184 0.00000 0.00011 9.0 181 0.00001 0.00010 
3 - 2  1.4 171 -0.00001 0.00003 2.0 162 0.00001 0.00012 

* Refined to nearest real values, 0 ° and 180"; average deviations from these values are 6.5 ° and 4.9 ° for tubes A and B, respectively. 
* Deviations of peaks from points on two-dimensional net in directions parallel (/~ Y) and perpendicular (6 X) to the tube axis; in I~ -~. 

FIGURE 4 Details on vesicle surfaces apparently relating ribbons 
of paired receptors to packing in tubes. (a) Ribbons are aligned 
obliquely (arrows) to the axis of an elongated vesicle, creating a 
loosely packed tubular surface lattice. (b) Rows of receptors in the 
terminal part of a tube are aligned with ribbons present in the 
rounded end region. This can be seen most clearly by viewing at 
glancing angle along the direction of the arrows. Bar, 0.1 #m. x 
177,000. 
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FIGURE 5 Mature tubes obtained after incubation for 4-5  wk at 17°C. Ribbons of paired receptors are visible in a "defective" 
region along the length of the tube in b and in the small rounded end regions of the tubes in c and d. Note also the zones of 
densest staining on either side of the middle portions of the tubes (see Fig. 2). Bar, 0.1 /~m. x 123,000. 
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FIGURE 6 Detail from flattened tubes showing different superposition patterns formed by the two sides. (a) The surface lattice 
is oriented so that the (2,-4) line (Fig. 8) is approximately parallel to the tube axis; in d it is oriented so that the (2,-3) line is 
approximately parallel to the tube axis. b and c are intermediate orientations, x 228,000. 

conditions used for separating a-a subunit-linked dimers from 
Torpedo in other studies (5). On the other hand, their orga- 
nization and morphology were insensitive to prolonged ex- 
posure (10 rain) of agonist (10 -4 M carbamylcholine), as also 
found for the paired groupings of receptors on quick-frozen 
postsynaptic membranes of Torpedo (15). 

Several structural observations suggest that tubes and rib- 
bons may be related polymorphic forms. First, the initial 
occurrence of ribbons in a suspension was concurrent with 
the appearance of tubes; no suspension showed only one of 
these structures. Second, ribbons occasionally aligned 
obliquely over the vesicle surface, forming a loosely packed 
helical structure (Fig. 4 a) which seems likely to be variant or 
precursor of the normal, compacted tube. Third, ribbons were 
often present on a tube-forming vesicle either in the rounded 
end region or in "defective regions" along the length of a tube 
(Figs. 4b and 5). Fourth, rows of receptors within the tubes 
were sometimes seen to be continuous with rows of receptors 
within the ribbons (Fig. 4 b). Taken together, the observations 
could be seen as indicating that the tube is simply a cylinder 
made of laterally aggregated ribbons which are aligned 
obliquely to its axis. This conclusion is substantiated by the 
analysis below. 

The Surface Lattice 
Images of the tubes present a wide range of patterns (Fig. 

6) which result from superposition of details from the two 
sides. The reason for the complexity is apparent from their 
optical transforms (Fig. 7) which show only one kind of singie- 
side reciprocal lattice but a range (~ _+ 7") in the orientation 
of this lattice relative to the axis of the tube. Thus there is 
only one basic surface lattice, but different superposition 
patterns arise because of the different orientations. 

The surface lattice, defined by the geometry of the recip- 
rocal lattice, is illustrated in Fig. 8 B. There is a significant 
variation in the measured unit cell dimensions, the largest 
dimensions being associated with tubes of the type in Fig. 6 a 

and the smallest with those of the type in Fig. 6d. Average 
values based on eight independent measurements from Fig. 7 
are: a = 89.7 A (_+ 4.4 SD), b = 162.4 ~, (_+ 6.0 SD), ~ = 
117.1" (_+ 1.5 SD). We note that the a and b dimensions 
would be nearly equivalent and the lattice would be approxi- 
mately hexagonal if it were not for the fact that there is a 
doubling of the b dimension, indicated by the presence of 
weak "superlattice" peaks (see Materials and Methods) at 
positions midway between the major transform peaks (Figs. 
7 and 8A). 

Projected Structure 

Projection maps synthesized from uniformly flattened and 
well-preserved tubes (see Materials and Methods) all showed 
the same basic features (Fig. 9). We found that the receptors 
were grouped in pairs, their orientations within each pair 
being related by apparent dyad axes perpendicular to the 
plane of the membrane. This relationship was indicated by 
the matching asymmetric distributions of mass around the 
perimeters of the differently oriented receptors and by their 
matching pentagonal shapes. It was also manifest in the close 
to centrosymmetric phases of the transform peaks (Table I). 
The packing in the lattice must therefore have the symmetry 
of the plane group p2 (as indicated in Fig. 9), rather than the 
lower assymetry (p 1) assumed in the calculations. 

An obvious deduction to be made from these maps is that 
the doubling of the b cell dimension (Fig. 8) is due simply to 
the dyad pairing of receptors along the (0,1) lines of the 
surface lattice. In addition, the appearance of rows of paired 
receptors within the tubes provides more direct evidence that 
tubes and ribbons (Fig. 4) are closely related polymorphic 
forms. Comparison of the rows of paired receptors in Fig. 9 
with computer-filtered images of the ribbons (results not 
shown) suggests that the row indicated in Fig. 9, top, has the 
packing that is common to both structures. This row is least 
affected in terms of "bonding" geometry by small variations 
in lattice dimensions and also appears to contain the basic 
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FIGURE 7 Optical transforms from tubes in Fig. 6, a-d, respectively. Peaks arising from one side of a tube lie on a lattice related 
to that of the other side by approximate mirror symmetry about a vertical line (direction of tube axis). In each example the peaks 
from just one side have been outlined; they are rotated differently relative to the tube axis in the different cases, reflecting 
variations in the orientation of the surface lattice. The strong peaks (squares) lie on a near-to-hexagonal net (full lines in a). There 
are also weak "superlattice" peaks (circles), lying in positions midway between the net points (along the broken lines in a), which 
are associated with a doubling of the b dimension of the unit cell (Fig. 9). Scale: 1 cm = 0.0076 g-1. 
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FIGURE 8 Diagrams of the Fourier transform (A) and surface lattice 
(B) of one side of a tube, viewed from the outside (with the hand 
determined as in Materials and Methods). Transforms computed 
from typical well-ordered tubes contain 14 independent h,k peaks, 
the amplitudes of which are proportional to the diameters in A (see 
also Table I). Certain other peaks, such as the 2,-1, are sometimes 
also apparent. Some lines of the surface lattice and the choice of 
unit cell used are indicated in B. The axes of most tubes lie within 
the directions defined by the (2,-3) and (2,-4) lines. Peaks for which 
k is odd ('superlattice" peaks) are associated with a doubling of the 
b dimension of the surface lattice (indicated by alternate rows of 
closed and open circles along the (0,1) lines). 

structural dimer (AB in Fig. 9), based on receptor-receptor 
connectivity. 

D I S C U S S I O N  

Results showed that tubes are composed of oppositely ori- 
ented pairs of receptor molecules arranged on a crystalline 
surface lattice with the plane group symmetry p2. The pairs 
of receptors align in rows along the (0, I) line of the surface 
lattice (Fig. 8), a direction which makes an oblique angle to 
the axis of the tube. This angle was found to be somewhat 

variable, giving rise to a wide range of superposition patterns 
from the two sides. The unit cell parameters also varied 
slightly, but the basic geometry of the packing did not change, 
indicating that all tubes are of one class. The appearance of 
ribbons composed of paired receptors on the surfaces of tube- 
forming vesicles, together with the equivalent configurations 
seen in projection maps, led us to conclude that the tubes 
grow by lateral aggregation of the ribbons. 

It was not proven that the pairing in the tubes and ribbons 
involves interaction between the ~-subunits through disul- 
phide links, but this seems very likely for several reasons. 
First, ribbons and tubes were observed to be rapidly dispersed 
upon addition of small amounts of dithiothreitol. Second, the 
most likely candidates for the pairing (the receptors AB in 
Fig. 9) involve close apposition of the highest contour levels, 
as would be expected with the ~-subunit being the largest of 
the five subunits. Third, the grouping of receptors in the 
ribbons and tubes bears a close resemblance to that seen in 
photographs of quick-frozen, deep-etched Torpedo postsyn- 
aptic membranes (15), where the receptors are presumably 
paired by the ~-6 interactions. 

In an earlier study of tubular crystals (17), prepared from 
the electric organ of Torpedo californica, it was proposed that 
the receptors arrange on a p l surface lattice (i.e., with all 
molecules pointing in the same direction), in contrast to what 
we have found. However, the receptors composing the tubes 
described earlier formed a less ordered, more loosely packed 
lattice, which did not permit as accurate an account to be 
given of their structure. We show here that there is actually a 
doubling of the b cell dimension, reflected in the appearance 
of weak "superlattice" peaks in optical transforms of the 
images. Analogous results were also obtained in a recent 
investigation of crystalline tubes of pentagonal caps©meres 
from polyoma virus, where the symmetry of the surface lattice 
is also of the plane group p2 (2). 

The twofold relation we observe can be used to give a 
measure of the accuracy of the projections in Fig. 9. In either 
example, the crystallographically related receptors differ from 
each other by less than the interval between contours, which 
implies that the maps do give a reliable representation of their 
stained structure. Thus the shown asymmetric distribution of 
mass and regular pentagonal shape are realistic features at the 
attained (30 A) level of resolution. The results do not agree 
with other determinations (e.g., references 17, 24, 27, and 28), 
which suggest that the receptor has strongly fluctuating dens- 
ities around its perimeter and/or looks like a horseshoe. 
However, in our initial selection of images (see Materials and 
Methods) we found that the receptor is very easily distorted 
by preparative procedures and by electron damage, factors 
that previously were not quantitatively evaluated. 

It is interesting to find that the receptor has a characteristic, 
asymmetric distribution of mass around its perimeter, yet a 
strikingly regular pentagonal shape. This combination of fea- 
tures suggests that the five subunits may have slightly different 
lengths, but approximately equal cross sections. An equiva- 
lence of cross sections extending into the lipid bilayer would 
be consistent with the observed amino acid homology between 
the four polypeptides and would support the notion (12, 13, 
21), that the transmembrane portions of the subunits share a 
common motif of secondary structure. 
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FIGURE 9 Maps showing the packing (/eft) and projected structures at 30 A resolution (right) of receptors on the tube surface, 
determined from the structure factors listed in Table I. The view is from the outside of the tube (i.e., synaptic face uppermost) 
and all maps are oriented such that the tube axis is vertical. Continuous lines represent negative and zero contour levels 
(corresponding to stain-excluding regions); broken lines represent positive contour levels. The left-hand maps show zero contour 
levels only; packing in the region shaded may correspond to that in ribbons (Fig. 3), with the pair of receptors, AB, making the 
most significant contacts. The right-hand maps are of the areas outlined; the putative I p2 plane group symmetry is indicated in 
the top right panel. The lattice dimensions in the top panels are a = 81.3 t~, b = 153.5 A, and ~' = 114.4 °, and in the bottom a = 
86.3 A, b = 157.5 A, and ~, = 116.4 °. These differences seem to reflect small differences between top and bottom maps in the 
packing of adjacent "ribbons." 
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