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Cells dynamically adjust their protein translation profile to main-
tain homeostasis in changing environments. During nutrient
stress, the kinase general control nonderepressible 2 (GCN2)
phosphorylates translation initiation factor eIF2α, initiating the
integrated stress response (ISR). To examine the mechanism of
GCN2 activation, we have reconstituted this process in vitro, using
purified components. We find that recombinant human GCN2 is
potently stimulated by ribosomes and, to a lesser extent, by tRNA.
Hydrogen/deuterium exchange–mass spectrometry (HDX-MS)
mapped GCN2–ribosome interactions to domain II of the uL10 sub-
unit of the ribosomal P-stalk. Using recombinant, purified P-stalk,
we showed that this domain of uL10 is the principal component of
binding to GCN2; however, the conserved 14-residue C-terminal
tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for
GCN2 activation. The HisRS-like and kinase domains of GCN2 show
conformational changes upon binding recombinant P-stalk complex.
Given that the ribosomal P-stalk stimulates the GTPase activity of
elongation factors during translation, we propose that the P-stalk
could link GCN2 activation to translational stress, leading to initi-
ation of ISR.
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Adynamic balance of anabolic and catabolic cellular pathways
interlace to efficiently use available resources. The in-

tegrated stress response (ISR) enables cells to recognize a variety
of imbalances in key cellular resources and respond by activating
protein kinases that modify the cell’s translational and tran-
scriptional programs. The ISR is widely conserved across eu-
karyotes and responds to numerous stressors including amino
acid insufficiency, protein misfolding, high salinity, UV light, and
glucose starvation (1). General control nonderepressible 2
(GCN2) is one of four related kinases that respond to these
cellular stresses by phosphorylating the translation initiation
factor eIF2α (2). All four eIF2α kinases have a conserved cata-
lytic domain, but each contains additional regulatory domains
enabling specificity of activation. The most commonly studied
stress leading to GCN2 activation is amino acid starvation.
GCN2 is implicated in a number of biological processes in both
health and disease, including the development of neurological
disorders (3), the onset of pulmonary veno-occlusive disease (4),
and the growth of Ras-transformed tumors under conditions of
nutrient deprivation (5).
The eIF2 (αβγ) heterotrimer, together with GTP and the ini-

tiator methionyl-tRNAMet, forms a ternary complex that delivers
the initiator tRNA to the small ribosomal subunit to form the
43S preinitiation complex (6). Translation initiation causes the
release of GDP-bound eIF2, which is then recycled to a GTP-
bound state by the guanine exchange factor (GEF) eIF2B. Under
stress conditions, eIF2α phosphorylation converts the translation
initiation factor from a substrate to a competitive inhibitor of
eIF2B, thereby decreasing global translation and conserving nu-
trients and energy. A select number of mRNAs are able to bypass
this translational block, such as the mRNA for the transcription
factor ATF4 (GCN4 in yeast) that up-regulates transcription of
various genes involved in the stress response (7–9).
How GCN2 recognizes and responds to amino acid starvation

has been a subject of investigation for over three decades. In

prokaryotes, the stringent response is a mechanism whereby
amino acid availability is signaled via alarmone nucleotides
(p)ppGpp (10). Under amino acid starvation, cognate deacylated
tRNA binds in the ribosome acceptor site (A site), recruits RelA
to the ribosome, and stimulates RelA-mediated (p)ppGpp syn-
thesis. This ribosome-mediated nutrient-sensing mechanism led
to early efforts to examine whether GCN2 could be analogously
regulated. Yeast GCN2 comigrates with ribosomes in sucrose
gradients and a C-terminal domain (CTD) binds directly to the
60S ribosome subunit (11). Mutations in this domain eliminate
ribosome binding and activation of yeast GCN2 in starved cells
(12). The presence of a domain homologous to His-tRNA syn-
thetase (HisRS-like) adjacent to the kinase domain of GCN2,
together with the observation that the HisRS-like domain binds a
broad range of deacylated tRNAs in preference to charged
tRNAs, led to the proposition that GCN2 is regulated by binding
deacylated tRNA, in a similar manner to RelA (13, 14). Muta-
tion of two residues in the HisRS-like domain that are analogous
to residues important for tRNA binding in tRNA synthetases
generated the GCN2 mutant known as m2 (13). This mutant
greatly decreases binding to deacylated tRNA, decreases activity
in vitro, and completely abolishes GCN2 activation in cells.
Studies using this m2 mutant have helped demonstrate the im-
portance of uncharged tRNA (e.g., refs. 15–17). In addition to
the m2 mutant, a number of other mutations in the HisRS-like
domain either constitutively activate GCN2 in yeast or impair
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tRNA binding and abolish activation in cells (17, 18). However,
direct activation of wild-type yeast GCN2 in vitro by deacylated
tRNA could not be demonstrated (15). More recent work with
mammalian GCN2 did show a modest activation of GCN2 with
tRNA in vitro (16, 19). For high-level nutritional sensing in yeast,
GCN2 must associate with the GCN1/GCN20 regulatory com-
plex, with GCN1 and GCN2 directly interacting with ribosomes
(20, 21). GCN1 and GCN20 each have a domain that is related
to regions of EF3, a fungal-specific protein involved in removing
the uncharged tRNA from the ribosomal exit site (E site) during
translation. This led to a model in which GCN1 and GCN20
would mimic the function of EF3; however, instead of removing
an uncharged tRNA from the E site, it was proposed that GCN1
would remove an uncharged tRNA from the A site and transfer
it to the HisRS-like domain of GCN2 (20, 22). More recent
studies have identified additional direct activators of GCN2
that, similarly to tRNA, have their effects significantly ablated by
the m2 HisRS-like domain mutation. These include free cytosolic
yeast P1 and P2 proteins of the ribosomal P-stalk (16) and Sindbis
virus and HIV-1 genomic RNA (19, 23).
While GCN2 can be activated in cells, a wide range of ob-

servations suggest that the enzyme is maintained in an inactive
state in the absence of stimulation (15, 17). Yeast GCN2 forms a
constitutive dimer even in the absence of activation, principally
through the CTD (24, 25). However, it has been proposed that
the nature of the dimer is important for regulating the enzyme,
with the active GCN2 dimer likely to have a parallel arrange-
ment, and an inactive dimer having an antiparallel arrangement,
as was observed in the crystal structure of the isolated GCN2
kinase domain (26–28). Binding to deacylated tRNA molecules
in times of amino acid starvation has been suggested to cause a
conformational rearrangement that alters multiple interdomain
interactions resulting in activation and autophosphorylation of
the GCN2 kinase domain (17, 29, 30).
The initial observation that yeast GCN2 associates with ribo-

somes and, in particular, with active polysomes (11), raised the
possibility of an analogy with the action of RelA on prokaryotic
ribosomes; however, the function of the ribosomal association
has remained unclear. This lack of clarity was further con-
founded by a more recent report that, unlike yeast, mouse
GCN2 does not form a stable complex that copurifies with ri-
bosomes (24). New insight into a possible functional link be-
tween GCN2 and ribosomes came from a recent analysis of mice
lacking both a specific neuronal tRNA (tRNAArg

UCU) and the
putative ribosome recycling factor GTPBP2 (31). Ribosomal
profiling of neurons from these mice showed a high incidence of
stalled translation elongation complexes and increased GCN2-
mediated eIF2α phosphorylation, yet showed no evidence for
accumulation of an uncharged tRNA. This raised the intriguing
possibility that GCN2 can also be activated by stalled ribosomes
in addition to tRNA. Interestingly, GCN2 was most activated
upon amino acid deprivation in cell lines with the most severe
ribosome pausing (32).
If GCN2 can sense stalled ribosomes, it would suggest a

functional relationship between GCN2 and the translation
elongation machinery. The translation elongation cycle is pri-
marily driven by the sequential actions of the GTPases eEF1A
and eEF2. The GTPase activity of these translation factors is
stimulated by a ribosomal protein complex known as the P-stalk
that is part of the ribosomal GTPase-associated center (GAC)
(33, 34). Short C-terminal tails (CTTs) that are present in each
of the P-stalk proteins directly interact with GTPases and acti-
vate them (33–35). Amino acid deficiency can indirectly alter the
translation cycle by reducing the availability of one or more ac-
ylated tRNAs, resulting in ribosome slowing or stalling. Whether
or how GCN2 might monitor an altered translation cycle as a
signal of nutrient starvation is unclear.

Here, we have reconstituted activation of human GCN2 in
vitro using purified components. We show that human GCN2
interacts directly with ribosomes and by using a combination of
hydrogen/deuterium exchange–mass spectrometry (HDX-MS)
and truncation analysis, we have identified domain II of the ri-
bosomal P-stalk protein uL10 [previously known as P0 (36)] as the
principal GCN2 binding site. We have found that human GCN2 can
be activated by purified ribosomes, the isolated recombinant P-stalk,
and deacylated tRNA. Among these, ribosomes are the most potent
activator. We show that the same CTTs, which are known to acti-
vate translational GTPases, also potently activate GCN2.

Results
Human GCN2 Is Activated by Ribosomes. To gain insight into how
human GCN2 is activated, we expressed human GCN2 in Sf9
cells and purified it to homogeneity (Fig. 1A). Size-exclusion
chromatography–multiangle light scattering (SEC-MALS) cal-
culated a molar mass of 392 kDa for the purified protein in so-
lution, consistent with the theoretical mass of 384 kDa for a
homodimer (Fig. 1B), which is in agreement with the oligomeric
state of yeast GCN2 (25). GCN2’s main physiological substrate is
eIF2α. Previous studies have shown that phosphorylation of
eIF2α serine 51 is essential for its role in translational regulation
downstream of GCN2 (37). We purified recombinant human
eIF2α (SI Appendix, Fig. S1A) and assayed GCN2’s ability to
phosphorylate it in vitro using a phospho-Ser51–specific anti-
body (Fig. 1C). GCN2 showed a detectable basal activity toward
eIF2α in the absence of any putative activating factors.
The addition of total liver deacylated tRNA to 1 μM showed

about a fivefold stimulation of eIF2α phosphorylation (Fig. 1C)
with an EC50 of ∼500 nM (SI Appendix, Fig. S1B). Human
GCN2 binds to deacylated tRNA with a KD of ∼2 μM (SI Ap-
pendix, Fig. S1 D–H), which is similar to yeast GCN2 (13, 15).
Increasing tRNA concentration to about 5× KD resulted in an
activation of about eightfold (SI Appendix, Fig. S1B). This tRNA
interaction was abrogated by two mutations in the previously
characterized tRNA-binding m2 motif in the HisRS-like domain
of GCN2 (F1143L R1144L, SI Appendix, Fig. S1 D–H), implying
tRNA is binding to the m2 motif as previously shown in yeast
(15). Thus, GCN2 can phosphorylate eIF2α on Ser51, and this is
stimulated approximately fivefold to eightfold by tRNA binding.
In marked contrast to 10 μM tRNA, 50 nM purified ribosomes

dramatically increased the rate and extent of eIF2α phosphory-
lation (Fig. 1C). A titration indicated eIF2α phosphorylation by
GCN2 is stimulated ∼20-fold by ribosomes, with an EC50 of
∼25 nM (SI Appendix, Fig. S1C). Deacylated tRNA did not further
stimulate GCN2 beyond that seen with ribosomes alone. Thus,
ribosomes show ∼20-fold greater potency and ∼3-fold higher
maximal stimulation than observed with deacylated tRNA.

GCN2 Directly Binds Ribosomes.Given the remarkable activation of
GCN2 by ribosomes in the purified, reconstituted system, we
attempted to characterize the interaction between GCN2 and
ribosomes. Recombinant, full-length, StrepII-tagged GCN2 was
combined with rabbit reticulocyte lysate and fractionated by size
using sucrose gradient sedimentation. A subset of GCN2 comi-
grated with the ribosomes in the cell lysate (Fig. 1D). In a parallel
experiment, we found that purified ribosomes are captured by
StrepII-tagged GCN2 immobilized on StrepTactin resin (Fig. 1E).
In contrast, ribosomes were not recovered in complex with the
GCN2 kinase domain alone (residues 585–1,024).
A series of GCN2 domain truncations and residue substitu-

tions (Fig. 2A and SI Appendix, Fig. S2; full details in SI Ap-
pendix, Table S1) identified the domains of GCN2 that influence
ribosome binding. Each recombinant protein was purified, immo-
bilized on StrepTactin resin, and used in pulldown experiments
with purified ribosomes. This analysis showed that three GCN2
domains are needed for maximal ribosome binding: the pseudokinase
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domain, the HisRS-like domain, and the CTD (Fig. 2A and SI
Appendix, Fig. S2B). Comparing constructs D and L shows that
the pseudokinase domain contributes to ribosome binding (Fig.
2A). However, the pseudokinase domain alone is not sufficient
to bind ribosomes (constructs G and H) and additionally needs
the HisRS-like domain. Indeed, each of the constructs lacking
the HisRS-like domain (Fig. 2A, constructs I and J) showed only
a very low ribosome binding efficiency. The previously charac-
terized m2 mutant in the HisRS-like domain (Fig. 2A, construct
M, with human F1143L and R1144L mutations, equivalent to
yeast Y1119 and R1120), which is unable to bind tRNA (15), also
significantly decreases binding to ribosomes. A smaller, but de-
tectable decrease in ribosome binding is seen when the CTD is
deleted (construct C).

Key Domains of GCN2 Required for Activation of eIF2α Phosphorylation
by Ribosomes. Using the in vitro eIF2α phosphorylation assay, we
examined the ability of each construct that contains the kinase

domain to phosphorylate eIF2α both in the presence and absence
of ribosomes (Fig. 2B and SI Appendix, Fig. S2C). To detect even
weak activation by the various GCN2 constructs, these single-point
assays were carried out at 50 nM ribosomes, twice the EC50 for
ribosomes. Full-length GCN2 (construct A) was able to phos-
phorylate eIF2α at a low level in the absence of ribosomes and was
significantly stimulated by the addition of ribosomes. The eIF2α
phosphorylation was due to the purified human GCN2, since the
D858N point mutant that eliminates GCN2 kinase activity still
bound ribosomes but eliminated eIF2α phosphorylation (construct
N, Fig. 2 and SI Appendix, Fig. S2). The kinase domain alone
(construct B) has similar basal level of eIF2α phosphorylation, but
it was not stimulated by ribosomes. Inclusion of the HisRS-like
domain (construct K) reinstated ribosomal activation. Other
constructs lacking the HisRS-like domain (constructs I and J)
phosphorylated eIF2α at a basal level but showed no increase in
activity in the presence of ribosomes. The pseudokinase domain
of GCN2 seems to modestly contribute to maximal ribosomal

A

C

D E

B

Fig. 1. Purified ribosomes are a potent activator of GCN2. (A) SDS/PAGE analysis of gel filtration fractions for purified human GCN2 stained with Coomassie
Blue. (B) Size-exclusion chromatography–multiangle light scattering (SEC-MALS) profile of GCN2. The molecular weight measured by light scattering was
392 kDa, consistent with a dimeric state. (C) eIF2α phosphorylation assay. The reactions were assembled and started by the addition of ATP. Samples were
taken at 0, 5, and 10 min. The reactions were analyzed by SDS/PAGE and Western blotting with antibodies against phospho-eIF2α (P-eIF2α) and total eIF2α. (D)
Migration of GCN2 through a sucrose gradient in the presence and absence of cytosol (rabbit reticulocyte lysate). The sample identities are shown on the Left.
The reactions were incubated for 15 min before being run over a 10–50% sucrose gradient. Eleven fractions were collected and analyzed by SDS/PAGE and
Western blotting with either an anti-StrepII tag or anti-RPL8 antibody. (E) Pulldown analysis of the GCN2–ribosome interaction. Either full-length GCN2 or the
kinase domain only (residues 585–1,024) were incubated with purified ribosomes and the resultant complexes captured on StrepTactin resin. The beads were
washed and the proteins eluted in sample buffer. The elutions were analyzed by SDS/PAGE and Coomassie staining. The bands corresponding to GCN2, the
kinase domain, and ribosomal proteins are indicated on the Right.
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stimulation (comparison of constructs K and F, Fig. 2B and SI
Appendix, Fig. S2C). For constructs K and L, which had greatly
impaired binding to ribosomes but had only partial decrease in
activity in single-point assays, we performed titrations with ribo-
somes that confirmed that these constructs are significantly less
active than the wild-type enzyme (SI Appendix, Fig. S2E).
Two GCN2 regions appear to have a role in the autoinhibition

of the kinase activity in the absence of ribosomes. The first is the
GCN2 CTD. Upon deletion of the CTD (construct C), GCN2’s
basal activity increased ∼20-fold (Fig. 2B and SI Appendix, Fig.
S2D), indicating that the CTD has a key role in maintaining
GCN2 in an inactive state. The charged linker that connects the
N-terminal RWD domain and the pseudokinase domain has a
minor role in GCN2 repression, as when this is deleted (com-
paring construct F with E), GCN2’s basal activity increases
twofold (Fig. 2B and SI Appendix, Fig. S2D). These findings
demonstrate that in human GCN2 the HisRS-like domain is
critical for both ribosome binding and kinase activation. The
CTD serves an autoinhibitory function to minimize basal activity,
consistent with the autoinhibitory role of the CTD in yeast (38).
The pseudokinase domain, although contributing to stable GCN2-

ribosome interaction, is mostly dispensable for GCN2 activation
by the ribosome.

GCN2 Interacts with the P-Stalk of the Ribosome. To study the
structural basis of GCN2’s interaction with the intact ribosome,
we made use of HDX-MS. Ribosomes purified from rabbit re-
ticulocyte lysate were mixed with D2O-containing buffer solution
at a final concentration of 0.5 μM ribosomes and incubated for
varying lengths of times (5, 50, and 500 min) at 32 °C (Fig. 3A).
Exchange was quenched, proteins were denatured, and the
resulting solution was injected onto a pepsin column to cleave
ribosomal proteins into peptides. Peptic peptides were separated
on a reverse-phase column and analyzed using ion mobility
separation MS. The same experiment was carried out in parallel
for ribosomes mixed with 2.5 μM purified, recombinant GCN2.
The differences in isotopic exchange between the two states
(with and without GCN2) identified regions on the ribosome
that were affected by GCN2. This method allowed us to make an
unbiased map of the interaction of GCN2 with the ribosome.
This is the largest system yet to be examined with HDX-MS,

covering 76 proteins digested into 1,070 peptides, representing
65% of the constituent sequences of the ribosomal proteins
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structs were incubated with purified ribosomes, and the resultant complexes were captured on StrepTactin resin. The elutions were analyzed by SDS/PAGE
and Coomassie staining. The intensities of three ribosomal proteins were quantified for each elution and normalized to the intensity of the bait protein.
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were started by the addition of ATP/MgCl2 (0.5 mM/18.75 mM) and quenched after 5 min. The samples were analyzed by SDS/PAGE and Western blotting
using antibodies against P-eIF2α and total eIF2α.
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(Dataset S1). Despite the complexity, the results unambiguously
identified a single continuous region of reduced isotopic ex-
change in the large ribosomal subunit protein uL10 (Fig. 3 B and
C and SI Appendix, Fig. S3). This protein is part of the P-stalk, a
heteropentameric complex that protrudes from the ribosome
and forms part of the GAC where the translation factors eEF1A
and eEF2 bind. Several peptides of uL10 showed a significantly
reduced rate of deuterium uptake in the presence of excess
GCN2 (SI Appendix, Fig. S3). While HDX-MS does not directly
map protein–protein interactions, areas showing decreased iso-
topic exchange rates in the presence of a binding partner are
likely to represent the binding site between the two proteins. The
peptides identified as containing the interaction site with GCN2
are within residues 121–157 of uL10. This is part of domain II, a
unique insertion in the N-terminal domain (NTD) of uL10 that
is not present in bacteria. The insertion is on the surface of the
ribosome, and it extends from the P-stalk toward the A site,
where it can contact translational GTPases [e.g., eEF2 as shown
in Fig. 3D (39)] on the 80S ribosome.

The P-Stalk Interacts with Several Regions of GCN2. To validate the
GCN2–uL10 interaction and investigate its functional relevance,
we recombinantly expressed and purified the heteropentameric
P-stalk complex consisting of uL10 bound to two P1–P2 heter-
odimers (SI Appendix, Fig. S4). P-stalk complexes were coex-
pressed in insect cells and purified under nondenaturing conditions.
Pulldown assays showed that this P-stalk complex is able to bind

to GCN2 immobilized on StrepTactin resin (Fig. 4A). HDX-MS
analysis of the GCN2 interaction with the purified, recombinant
P-stalk showed that six peptides in domain II of uL10 were
protected upon addition of GCN2 (peptides 62–75, 76–89, 77–
87, 121–137, 145–153, and 192–205; Fig. 4B and Dataset S2).
Consistent with HDX-MS results with intact ribosomes, domain
II peptides (121–137 and 145–153) show significant decrease
in isotopic exchange upon interaction with GCN2. The isolated
P-stalk additionally showed GCN2-dependent decreases in HDX
in domain I of the NTD of uL10 that also contacts the 28S
rRNA in the intact ribosome (Fig. 4B). Thus, by both pulldown
and HDX-MS assays, the isolated P-stalk is sufficient for in-
teraction with GCN2 in vitro.
HDX-MS of GCN2 in the absence versus presence of the ri-

bosomal P-stalk showed a change in isotopic exchange for several
regions of GCN2 (Fig. 4C). Reductions in the rate of exchange
were seen in the pseudokinase domain (peptides 301–307, 302–
309, and 453–459) and the HisRS-like domain, both of which
were implicated in ribosome binding by truncation analysis (Fig.
2A). The HisRS-like domain showed both regions with reduc-
tions in isotopic exchange (peptides 1,248–1,254 and 1,483–
1,492) and regions with increases in isotopic exchange (peptides
covering the region 1,295–1,312), indicating that this domain
may undergo complex conformational changes upon P-stalk
binding. Significant difference in exchange were also seen for
the CTD, where the two N-terminal helices show differences in
exchange (SI Appendix, Fig. S5B). These helices form part of the
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dimer interface that is necessary for GCN2-mediated translation
control (24).
Upon P-stalk binding, the kinase domain shows protection in

the activation loop (peptides covering 866–903), a region near
the C terminus of the domain (peptides covering 995–1,008) and
in the insert that is not present in the yeast GCN2 kinase domain
crystal structure (peptides in the region 662–794) (Fig. 4C and SI
Appendix, Fig. S5). There is also an increase in isotopic exchange
in a peptide (residues 630–639) in helix αC of the N-lobe of the
kinase domain. This helix is one of the elements that is involved
in the switch between the inactive and active forms of the yeast
GCN2 (27, 28). In the inactive form of the kinase domain, in
yeast GCN2 Glu-643 (equivalent to human Glu-636) in αC in-

teracts with Arg-834 (equivalent to human Arg-847) to form a
link between the N- and C-lobes of the kinase domain, which is
disrupted upon GCN2 activation (28).

The P-Stalk Is Sufficient to Activate GCN2 in Vitro. Beyond a physical
interaction, we found that the isolated P-stalk activates GCN2-
mediated phosphorylation of eIF2α in the absence of the re-
mainder of the ribosome (Fig. 4D). Titrating in increasing con-
centrations of the P-stalk complex gave an estimated EC50 for
activation of 250 nM and about a 40-fold increase in activity at
the highest concentration measured (2.5 μM). We also tested
whether the P-stalk complex and tRNA had a synergistic effect
on GCN2 by including a low concentration (100 nM) of the
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P-stalk and titrating in tRNA, but we saw no significant differ-
ence with respect to tRNA alone (Fig. 4D and SI Appendix, Fig.
S6A), suggesting that there is no synergy. Among the three GCN2
activators we have tested, ribosomes are the most potent, followed
by the isolated P-stalk, and then by deacylated tRNA (SI Appen-
dix, Fig. S6B). The influence of the P-stalk on GCN2 is primarily
an increase in specific activity, with no change in Km (SI Appendix,
Fig. S6C).

The C-Terminal Acidic Motifs of the P-Stalk Subunits and uL10 Domain
II Are Essential for Full GCN2 Activation. Given that the P-stalk is a
heteropentameric complex made up of three polypeptides, we

expressed subcomplexes and variants of the P-stalk to determine
which components are necessary for the activation of GCN2 (SI
Appendix, Fig. S4). In contrast to the full-length P-stalk, the uL10
NTD did not activate GCN2 (Fig. 5A). Because HDX-MS in-
dicated binding of GCN2 to domain II of uL10, we expressed the
full P-stalk with domain II of uL10 deleted (ΔdII P-stalk, resi-
dues 111–183 of uL10 deleted). This P-stalk variant showed a
greatly diminished activation of GCN2 (Fig. 5A). It has been
proposed that P1 and P2 are sufficient for activation of GCN2
(16). However, our results show that, on its own, the human P1/
P2 heterodimer did not activate GCN2 (Fig. 5A), suggesting
that all three proteins of the P-stalk are required for activation.
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The C termini of uL10, P1, and P2 all contain a conserved 14-
residue motif [SEESD(D/E)DMGFGLFD] that is implicated in
activation of translational GTPases. Our HDX-MS analysis shows
that the CTT of uL10 and a peptide (residues 73–93) adjacent to the
CTT of P2 have significant protection in the presence of GCN2. To
test whether these CTTs are also involved in GCN2 activation, we
expressed the P-stalk with these 14 C-terminal residues deleted
from each of the polypeptides (ΔC14all P-stalk). Strikingly, ΔC14all
P-stalk was incapable of activating for GCN2 (Fig. 5A). Further-
more, deleting the CTTs from just P1 and P2 (leaving uL10 intact)
dramatically decreases activation (Fig. 5B, ΔC14P1/P2 P-stalk). The
extent of activation seems to be proportional to the number of
CTTs available for interaction with GCN2, with activities in the
order 5 CTT (WT) > 3 CTT (ΔC14P1) > 1 CTT (ΔC14P1/P2) >
0 CTT (ΔC14all) (Fig. 5B).

Discussion
The role of GCN2 in the ISR pathway as a unique convergence
point of nutrient availability and cell growth and proliferation
has stirred interest in this kinase as a possible target for phar-
maceutical development. Much of our current understanding of
GCN2 has been derived primarily from in vivo studies in yeast.
While aspects of this pathway may be well conserved in eu-
karyotes, there seem to be key differences in the way that
GCN2 is activated in yeast and mammals. Furthermore, the in-
terplay between GCN2 and protein translation means that it
can be difficult to disentangle direct versus indirect mechanisms
of control using in vivo analysis. For these reasons, we sought to
develop an in vitro system to study the mechanistic basis of
GCN2 regulation.
Consistent with a wide range of studies in cells, we find that

deacylated tRNA activates human GCN2 toward its substrate
eIF2α in vitro. In addition, we find that human GCN2 is even
more potently stimulated by ribosomes and the purified ribo-
somal P-stalk complex. The degree of activation by ribosomes
and P-stalk is higher than with deacylated tRNA, which does not
achieve maximal stimulation of GCN2 even at a concentration
five times its KD. We see no synergy in activation by P-stalk and
deacylated tRNA, which may imply that these two activators
operate either in parallel, in different cellular compartments or
under different circumstances in vivo.
The in vivo activity of GCN2 has been previously linked to

ribosomes in both yeast and mammalian systems (11, 20).
However, a direct effect of ribosomes on GCN2 activity has not
been demonstrated previously. Recently, Ishimura et al. (31)
showed that GCN2 is activated in the brains of mice lacking a
single isoacceptor tRNA and the putative ribosome rescue factor
GTPBP2. Because these mice show widespread ribosomal stall-
ing yet no change in deacylated tRNA levels, the authors pro-
posed that a stalled ribosome might activate GCN2 in a tRNA-
independent manner. The findings presented here are consistent
with a model whereby GCN2 is receptive to activating signals
when it is associated with the ribosome. Uncharged tRNAs may
be one such signal, although currently there is no evidence that
deacylated tRNAs can occupy the A site of eukaryotic ribo-
somes. The observations of Ishimura et al., whereby GCN2 is
prominently activated under conditions in which ribosomes stall
with no increase in uncharged tRNA, are easy to reconcile with
our finding that human GCN2 physically interacts with ribo-
somes and is activated by P-stalk CTTs. These observations begin
to provide a molecular framework for in vivo studies of mammalian
GCN2.
As part of our analysis of ribosome-mediated GCN2 activa-

tion, we found that the previously characterized m2 mutant in
the HisRS-like domain cannot be activated by ribosomes in vitro.
The homology of this domain to a tRNA synthetase, together
with the inactivating m2 mutant, was a major line of evidence
implicating deacylated tRNA as a direct activator (13, 14). Our

observation that tRNA-independent activation by ribosomes also
critically depends on this motif suggests that results with this
mutant may arise from a complex mechanism.
Our HDX-MS results showing that GCN2 binds to ribosomes

via the P-stalk suggest a role for GCN2 as a factor monitoring
ribosomal conformation or functional status. The P-stalk is ad-
jacent to the A site of the ribosome and is thought to be involved
primarily in the recruitment of translation factors during elon-
gation (40). This would position GCN2 at the site of translational
control. Previous results with yeast P-stalk components showed
that P1 and P2 alone were sufficient for GCN2 activation (16),
yet in contrast we find that human P1 and P2 proteins have no
influence on GCN2 activity in the absence of uL10. However, we
find that CTTs of P1 and P2 are critical for activating GCN2-
mediated phosphorylation of eIF2α. Since HDX-MS indicates
that the uL10 NTD is the predominant site of interaction with
GCN2, our results imply that the P-stalk makes a bipartite in-
teraction with GCN2. The isolated P-stalk fully activates
GCN2 in vitro, but with an EC50 that is higher than for intact
ribosomes. It may be that GCN2 makes other interactions with
the ribosome that cannot be detected by HDX-MS, such as
interacting directly with the 28S RNA.
The role of the P-stalk CTTs in activating GCN2 adds to the

growing list of P-stalk CTT functions, as they are also important
for growth (41), translation fidelity (42), interaction with trans-
lation factors (34, 35, 43), increasing GTPase activity of elon-
gation factors in vitro (44), and interaction with ribosome
inactivating proteins such as the ricin A-chain and trichosanthin
(45). Both domain II and the CTTs are important for activation
of eEF2 by archaeal P-stalk (46).
We do not know how P-stalk-mediated activation of GCN2 is

regulated in cells (Fig. 5C). It could be that binding of human
GCN2 to ribosomes in cells is regulated, so that it occurs only
under stress. Alternatively, GCN2 could associate with ribo-
somes even under basal conditions by GCN2 binding to uL10
NTD, but activation by the P-stalk might occur only under stress
conditions as the P-stalk CTTs become available. Upon cellular
amino acid starvation, ribosome stalling could enable the CTTs
to access and activate GCN2 through an unknown mechanism.
Activated GCN2, either while still on the ribosome or after being
released from it, would then phosphorylate eIF2. This observa-
tion that the P-stalk engages with both translational machinery
and GCN2 creates further avenues for understanding the role of
GCN2 in cellular homeostasis.

Materials and Methods
Protein Expression and Purification. Recombinant StrepII-tagged GCN2 and
GCN2 truncation variants as well as GST-tagged P-stalk proteins were cloned
into baculovirus expression vectors and expressed in insect cells. Human eIF2α
was expressed in bacterial cells. GCN2 constructs were purified by Strep-
Tactin affinity chromatography, P-stalk constructs by glutathione affinity
chromatography, and eIF2α by immobilized metal affinity chromatography.
All constructs were further purified by anion exchange and gel filtration
chromatography. Ribosomes were purified from rabbit reticulocyte lysate.
Details of purifications are described in full in SI Appendix, SI Materials
and Methods.

Biophysical Analysis of GCN2. The oligomeric state of GCN2was determined by
SEC-MALS. Binding of tRNA to GCN2 was quantitated by surface plasmon
resonance, with the GCN2 covalently coupled to a CM5 chip (BiaCore), as
described in full in SI Appendix, SI Materials and Methods.

eIF2α Phosphorylation Assay. eIF2α phosphorylation was detected by West-
ern blotting with an anti–phospho-eIF2α antibody as described in SI Ap-
pendix, SI Materials and Methods.

Binding Assays. StrepII-tagged GCN2 constructs were bound to StrepTactin
resin and ribosomal binding was detected by capturing purified ribosomes.
Association with ribosomes was also shown by comigration of GCN2 with
ribosomes in a sucrose gradient. For assay of P-stalk components binding

Inglis et al. PNAS | March 12, 2019 | vol. 116 | no. 11 | 4953

BI
O
CH

EM
IS
TR

Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813352116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813352116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813352116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813352116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813352116/-/DCSupplemental


to GCN2, purified GST-tagged P-stalk constructs were captured onto
StrepTactin-bound GCN2. Details are described in SI Appendix, SI Materials
and Methods.

Deuterium Exchange Measurements. Experiments were set up and analyzed as
described fully in SI Appendix, SI Materials and Methods. Briefly, to detect
GCN2 interactions with ribosomes, two reactions were prepared: one with
0.5 μM ribosomes alone and the other having 0.5 μM ribosomes and 2.5 μM
GCN2. Both reactions were incubated on ice for 15 min, and then buffer with
D2O was added to bring the D2O concentration to 78%, and samples were
further incubated for 5, 50, and 500 min at 32 °C. Exchange was quenched,
and samples were frozen in liquid nitrogen. Samples to analyze P-stalk
complex/GCN2 interactions were similarly prepared, except deuteration
was carried out for 0.3, 3, 30, 300, and 3,000 s. Samples were prepared for
GCN2 alone, P-stalk complex alone, and two samples of GCN2 plus P-stalk:

one sample contained 5 μM GCN2 and 15 μM P-stalk, while the other sample
contained 15 μM GCN2 combined with 5 μM P-stalk.
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