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Task 1:

For a random variable X ∼ N(µ, σ2), R’s pnorm function can be used to calculate
P (X ≤ x).

1. Assuming X ∼ N(10, 4), Calculate P (X ≤ 9).

2. Assuming X ∼ N(10, 4), Calculate P (|X − 8| ≤ 1).

Task 2:

The covariance between two random variables X and Y is given by:

Cov(X, Y ) = E ((X − µX)(Y − µY ))

where µX and µY are the means of X and Y , respectively.
Show that the covariance may also be expressed:

Cov(X, Y ) = E(XY )− µXµY

Task 3:

An artificial random sample following a Binomial distribution can be generated using
the rbinom function.

1. Generate a random sample following a Binomial Bin(100, 0.4) distribution,
containing 10 observations.

2. Given that the probability density function corresponding to an empirical sam-
ple may be estimated using the density function, generate a plot of the prob-
ability density function of your Bin(100, 0.4) sample created above (note that
the output of the density function can be directly plotted using the plot

function, i.e. a command of the form: plot(density(SOME DATA VECTOR)) is
acceptable).

3. As a consequence of the Central Limit Theorem, the Binomial distribution
may be approximated by the Normal distribution with the same mean and
variance as the Binomial distribution (for n large and p not close to 0 or 1).
Identify the values of the mean and variance of a Bin(100, 0.4) distribution
(hint – google “binomial distribution” to find the mean and variance).
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4. We will now visually investigate using the Normal distribution to approximate
a Binomial. Begin by generating a vector containing all potential outcomes
(i.e. integers from 0 to 100). The dnorm function is used to calculate the
value of the Normal probability density function corresponding to a particular
outcome/observation. Plot the Normal density function that would be used
to approximate that of the Bin(100, 0.4) distribution.

5. Using the lines function to allow overplotting, display both the Normal den-
sity function that would be used to approximate that of the Bin(100, 0.4)
distribution and the random sample of 10 Bin(100, 0.4)-distributed observa-
tions created earlier. Do the two density functions appear to correspond well?

6. Repeat the previous step, this time comparing the Normal density function
with that of a random sample of 100 Bin(100, 0.4)-distributed observations.
Does the Normal distribution appear to approximate the Binomial well?

7. Use a ‘for loop’ to iteratively recreate a new random Bin(100, 0.4) sample of
100 observations and overplot the corresponding empirical density functions
onto the plot of the Normal density function. The ‘for loop’ should iterate 50
times. Note – ‘for loop’ syntax:

for(i in 1:n){***INSERT COMMAND(S)***} (1)

Has your opinion changed regarding whether or not the Normal distribution
appears to approximate the Binomial well?

8. Use the Normal distribution to estimate P (X ≤ 35) given thatX ∼ Bin(100, 0.4).

9. Use the Binomial distribution to calculate P (X ≤ 35). How does this compare
with the previous estimate?

10. Use a ‘for loop’ to iteratively estimate P (X ≤ 35) from random samples of 100
Bin(100, 0.4)-distributed variates, iterating 100 times, storing the resultant
distribution of estimates in a vector. Plot the density function corresponding
to this distribution of estimates. What is the mean of this distribution? What
is the standard deviation of this distribution? Where do the values calculated
in parts 8 and 9 (i.e. the actual value of P (X ≤ 35), and the estimate from the
Normal approximation) lie in relation to this distribution? What conclusions
can you draw?

Task 4:

The moment generating function (MGF) uniquely characterises a distribution – if
the MGF of X is equal to the MGF of Y then both X and Y follow the same
distribution. Note that the MGF of a standard Normal random variable X is:

mX(t) = etµ+
1
2
t2σ2

Use this information to show that if X ∼ N(µ, σ2) and Y = αX + β then:

Y ∼ N(αµ+ β, α2σ2)

for some constants α, β, utilising the knowledge:

mf(X)(t) = E(ef(X)t)

and
mαX(t) = mX(αt)


