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Set Notation

A set is a collection of objects, written using curly brackets {}

If Ais the set of all outcomes, then:

A ={heads,tails}

A ={one,two,three, four, five,six}

A set does not have to comprise the full number of outcomes

E.g. if A is the set of dice outcomes no higher than three, then:

A = {one,two,three}



Set Notation

If Aand B are sets, then:

A’ Complement - everything but A
AUB Union (or)

AMNB Intersection (and)

A\B Not

%) Empty Set
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Set Notation
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Probability Theory

To consider Probabilities, we need:

1. Sample space: Q — the set of all possible outcomes

Q ={heads,tails}

Q = {one,two,three, four, five,six}




Probability Theory

To consider Probabilities, we need:

2. Event space: F - the set of all possible events

Q = {heads,tails}
F ={{heads,tails},{heads} ,{tails}, D}




Probability Theory

To consider Probabilities, we need:

3. Probability measure: P P:F—[0,1]

P must satisfy two axioms:
P(Q)=1 Probability of any outcome is 1 (100% chance)

PUA)) = EP(AZ.) If and only if A,A,,... are disjoint



Probability Theory

To consider Probabilities, we need:

3. Probability measure: P P:F—[0,1]

P must satisfy two axioms:
P(Q)=1 Probability of any outcome is 1 (100% chance)

PUA)) = EP(AZ.) If and only if A,A,,... are disjoint

w P({one,two})= P({one})+ P({two})
1 1 1

_=_+_
3 6 6




Probability Theory

To consider Probabilities, we need:

1. Sample space: Q
2. Event space: F
3. Probability measure: P

As such, a Probability Space is the triple: (Q, F,P)



Probability Theory

To consider Probabilities, we need:

The triple: (Q,F ,P)

i.e. we need to know:

1. The set of potential outcomes;

2. The set of potential events that may occur; and

3. The probabilities associated with occurrence of those events.
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Notable properties of a Probability Space (Q, F,P):



Probability Theory

Notable properties of a Probability Space (Q, F,P):

P(A')=1-P(A)

A ={one,two}

w A’ = {three, four, five,six}

P(A)=1/3
P(A)=2/3
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Probability Theory

Notable properties of a Probability Space (Q, F,P):

P(A')=1-P(A)

P(AUB)=P(A)+P(B)- P(ANB)

w A = {one,two} P(A)=1/3
B = {two,three} P(B)=1/3
AU B ={one,two,three} P(AUB)=1/2
ANB={two} P(ANB)=1/6
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Notable properties of a Probability Space (Q, F,P):
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f ACB then P(A)<P(B) and P(B\A)=P(B)-P(A)
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Probability Theory

Notable properties of a Probability Space (Q, F,P):

P(A')=1-P(A)
P(AUB)=P(A)+P(B)- P(ANB)
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Probability Theory

Notable properties of a Probability Space (Q, F,P):

P(A')=1-P(A)
P(AUB)=P(A)+P(B)- P(ANB)

f ACB then P(A)<P(B) and P(B\A)=P(B)-P(A)

w A ={one,two} P(A)=1/3
B ={one,two,three} P(B)=1/2

B\ A = {three} P(B\A)=1/6




Probability Theory

Notable properties of a Probability Space (Q, F,P):

P(A')=1-P(A)

P(AUB)=P(A)+P(B)- P(ANB)

if ACB then P(A)<P(B) and P(B\A)=P(B)-P(A)
P(J)=0



Probability Theory

So where’s this all going? These examples are trivial!



Probability Theory

So where’s this all going? These examples are trivial!

Suppose there are three bags, B;, B, and B;, each of which contain
a number of coloured balls:

« B; - 2 red and 4 white
B, -1 red and 2 white
« B; -5 red and 4 white

A ball is randomly removed from one the bags.
The bags were selected with probability:

¢ P(Bl) =1/3
« P(B,) =5/12
« P(B;) =1/4

What is the probability that the ball came from B, given it is red?



Probability Theory

Conditional probability: P(A|B)= P(ANB)
P(B)
Partition Theorem: P(A)= EP(A M B;) If the B, partition A
P(BIA)P(A)

Bayes’ Theorem: P(A|IB)=

P(B)



Random Variables

A Random Variable is an object whose value is determined by
chance, i.e. random events

Maps elements of Q onto real numbers, with corresponding
probabilities as specified by P
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Random Variables

A Random Variable is an object whose value is determined by
chance, i.e. random events

Maps elements of Q onto real numbers, with corresponding
probabilities as specified by P

Formally, a Random Variable is a function:

X:Q2Q—R

Probability that the random variable X adopts a particular value x:

P{weQ: X(w)=x})



Random Variables

A Random Variable is an object whose value is determined by
chance, i.e. random events

Maps elements of Q onto real numbers, with corresponding
probabilities as specified by P

Formally, a Random Variable is a function:

X:Q2Q—R

Probability that the random variable X adopts a particular value x:

P{weQ: X(w)=x})

Shorthand: P(X =x)



Random Variables

If the result is heads then WIN - X takes the value 1
If the resultis tails then LOSE - X takes the value 0

Q ={heads,tails}
X:Q—{0,1}

e

1

P({heads}) x
P(X=x)=-
P{tails}) x=0

PX=x)=1/2 x&{0,1}



Random Variables

Example:

w Q = {one,two,three, four, five, six}

Win £20 on a six, nothing on four/five, lose £10 on one/two/three

X :Q—{-10,0,20}




Random Variables

Example:

w Q = {one,two,three, four, five, six}

Win £20 on a six, nothing on four/five, lose £10 on one/two/three

X :Q—{-10,0,20}

P({six})=1/6 x =20

P(X=x)=1 P({ four, five})=1/3 x=0

P({one,two,three})=1/2  x=-10

Note - we are considering the probabilities of events in JF



Probability Mass Functions

Given a random variable:

X:Q— A

The Probability Mass Function is defined as:

Py(x)=P(X =x)

Only for discrete random variables



Example:

Win £20 on a six, nothing on four/five, lose £10 on one/two/three

S8

px(x)

Probability Mass Functions

P({six})=1/6 x =20
py(x)=1  P{four, five})=1/3 x=0
P({one,two,three})=1/2  x=-10
10
0.8
0.6
04
02
0.0 T




Probability Mass Functions

Notable properties of Probability Mass Functions:

1.0
0.8

0.6 —

| | T

px(x)




Probability Mass Functions

Notable properties of Probability Mass Functions:

Dyx(x)=0

Y py(x)=1

XEA

Interesting note:

If p() is some function that has the above two properties,
then it is the mass function of some random variable...



Probability Mass Functions

For a random variable X:Q— A

Mean: E(X)= Expx(x)

XEA

1.0
0.8

0.6 —

| | T

-20 -10 0 10 20 30

px(x)




Probability Mass Functions

For a random variable X:Q— A

Mean: E(X)= Expx(x)

XEA

1.0
0.8

0.6 —

04 -
02 - [
0.0 =it

px(x)

20

30

Mean



Probability Mass Functions

For a random variable X:Q— A

1 n
Mean: E(X)= 2 Xpy (X) Compare with: —zxi
XEA n =1
1.0 —
&8 Mean
= 0.6 —
5 04 | ;
02 I
0.0 - % B g [ 3.3 T




Probability Mass Functions

For a random variable X:Q— A

Mean: E(X)= Expx(x)

XEA

Median: any m such that: sz(x) =1/2 and pr(x) >1/2

X=m x=zm

1.0

0E Mean
06 Median

04 —
0.2 - [
00 — -51-1.7 T

px(x)




Probability Mass Functions

For a random variable X:Q— A

Mean:

E(X)= ") xpy(x)

XEA

Median: any m such that: sz(x) =1/2 and pr(x) >1/2

Mode:

x=m xX=m
argmax(pX (x)) : most likely value
X

1.0 -

08 - Mean
~ 06 - | Median
S 04 Mode

0.2

0.0 -5H1.7 T
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The Bernoulli Distribution: X ~ Bern(p)

p . success probability

X:Q—{0,1} Py (x) =




Common Discrete Distributions

The Bernoulli Distribution: X ~ Bern(p)

p . success probability

X:Q—{0,1} Py (x) =

Example:
X :{heads,tails} — {0,1}

px(x)=1/2 x €10,1}

Therefore X ~ Bern(1/2)



Common Discrete Distributions

The Binomial Distribution: X ~ Bin(n, p) E(X)=np

n : number of independent trials

p . success probability

X:Q—{0,1,...,n} pX(x)=(Z)pX(1_p)n—x



Common Discrete Distributions

The Binomial Distribution: X ~ Bin(n, p) E(X)=np

n : number of independent trials

p . success probability

n —-X
X:Q—{0,1,...,n} px(x)= (x)p (1-p)
pX(X) : probability of getting x successes out of n trials
px . probability of x successes

(I-p) . probability of (n-x) failures

n! . .
) = : number of ways to achieve x successes and (n-x) failures

x!(n=x)!  (Binomial coefficient)




Common Discrete Distributions

The Binomial Distribution: X ~ Bin(n, p) E(X)=np

n : number of independent trials

p . success probability

n
X:Q—{0,1,...,n} pX(x)=(x)px(1—p)”‘x
X 1-x r p x=1
n=1: pPx(xX)=p (I-p) " =;
I-p x=0

X ~ Bin(l, p) < X ~ Bern(p)



Common Discrete Distributions

The Binomial Distribution: X ~ Bin(n, p) E(X)=np

n : number of independent trials

p . success probability

X:Q2—={0,1,....,n}

n
px(x)=( )p’“(l—p)’”
X

0.30
0.25
0.20
0.15

px(x)

0.10 —

0.05

0.00 —

N

[ I [ I
4 6 8 10

Number of Successes (x)

n=10
p=0.5



Common Discrete Distributions

The Binomial Distribution:

n : number of independent trials

p . success probability

X:Q—{0,1,...,n}

X ~Bin(n, p)

E(X)=np

n
px(x)=( )p’“(l—p)’”
X

0.08 —

0.06 —

px(x)

0.04 —

0.02

0.00 —

20

[ I
40 60

Number of Successes (x)

80

100

n =100
p=0.5



Common Discrete Distributions

The Binomial Distribution:

n : number of independent trials

p . success probability

X:Q—{0,1,...,n}

X ~Bin(n, p)

E(X)=np

n
px(x)=( )p’“(l—p)’”
X

0.12
0.10
0.08 —
0.06 —

px(x)

0.04 —
0.02

0.00 —

20

[ I
40 60

Number of Successes (x)

80

100

n=100
p=038



Common Discrete Distributions

Example:

Number of heads in n fair coin toss trials

X:Q—1{0,1,..n)

n=72 Q ={heads : heads,heads : tails,tails : heads,tails : tails}

In general: |£2| =2"



Common Discrete Distributions

Example:

Number of heads in n fair coin toss trials

X:Q—1{0,1,..n)

n=72 Q ={heads : heads,heads : tails,tails : heads,tails : tails}
In general: |£2| =2"
Notice: X ~ Bin(n,1/2)
n
Py () = ( )0.5” E(X)=n/2
X



Common Discrete Distributions

The Poisson Distribution: X ~ Pois(A) E(X)=A

Used to model the number of occurrences of an event
that occur within a particular interval of time and/or space

A : average number of counts (controls rarity of events)

-A
Ale

x!

X:Q—{0,1,...} Py (x)=



Common Discrete Distributions

The Poisson Distribution:

« Want to know the distribution of the number of occurrences of an event
—> Binomial?

« However, don’t know how many trials are performed - could be infinite!

. But we do know the average rate of occurrence: E(X)=A

X ~Bin(n,p) = EX)=np
= A=np



Common Discrete Distributions

n! X n—x
Binomial: PX(X)= pd-p)
x!(n—-x)!

p=2 = pw=—2 (’L) (1—1)_

n x!(n=-x)!'\n n




Common Discrete Distributions

n!

inomial: X = "A-p)

B | px(x) x!(n_x)!p( p)

p=2 = pw=—2 (’L) (1—5)_
n x!(n=-x)!'\n n

Pr(r)= x!'n"(n-x)!

/1_1)”‘
)Lx n! \ n
(A
. n




Common Discrete Distributions

n!

inomial: X = "A-p)
B | px(x) x!(n_x)!p( p)
p=2 = pw=—2 (’L) (1—5)_
n x!(n=-x)!'\n n
-3)
n

as n —=>x

Px(X)= 3 "



Common Discrete Distributions

n' X n-x
Binomial: PX(X)= p (1-p)
x!(n-x)!

n x!(n—-x)!

p=2 = p-—2 ( ) 1- %)

as n —=>x




Common Discrete Distributions

n!

inomial: X = "A-p)
B | Px(x) x!(n_x)!p( p)
A n! AN
- — 1-=
P T T x>'( ) n)
--3)
1 n

as n —=>x




Common Discrete Distributions

The Poisson distribution is the Binomial distribution as 17 — ©
f X,~Bin(n,p) then X —2—Pois(np)

If n is large and p is small then the Binomial distribution can be
approximated using the Poisson distribution

This is referred to as the:
e« “Poisson Limit Theorem”

« “Poisson Approximation to the Binomial”
« “Law of Rare Events”

A fixed n—so0o = p—0

Poisson is often more computationally convenient than Binomial
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